

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Management of Acute Dorsal Unstable Proximal Interphalangeal Fracture Dislocation

A Systematic Review / Meta-Analysis

Submitted for Partial Fulfillment of Master Degree in Orthopedic Surgery

> By Abbas Hameed Rashid Al-khafaji *MB BCh*

> > Under supervision of

Ass. Prof. Dr. Ahmed Naeem Atiyya, MD

Assistant Professor of Orthopedic Surgery Faculty of Medicine – Ain Shams University

Dr. Amr Moustafa Mohamed, MD

Lecturer of Orthopedic Surgery
Faculty of Medicine – Ain Shams University

Faculty of Medicine Ain Shams University 2020

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, thanks for AUAH for guiding and helping me to finish this work.

I would like to express my deepest thanks and sincere gratitude to Prof. Dr. Ahmed Naeem Atiyya, Assistant Professor of Orthopedic Surgery, Faculty of Medicine, Ain Shams University, for his close supervision, valuable instructions, continuous help and sincere advice.

I would like to express my deepest gratitude to Dr. Amr Moustafa Mohamed, Lecturer of Orthopedic Surgery, Faculty of Medicine, Ain Shams University, for his enthusiastic supervision.

Abbas Hameed Rashid Al-khafaji

Dedication

Words can never express my sincere thanks to My Family and My Wife for their generous emotional support and continuous encouragement, which brought the best out of me. I owe them all every achievement throughout my life.

I would like to express my everlasting gratitude to all My Professors, Colleagues and Friends, so many of them influenced, encouraged and inspired me throughout the years. I wish them the best of all.

Abstract

Background: Fracture-dislocations of the proximal interphalangeal joint (PIPJ) are common injuries that, when inappropriately treated dysfunctional joint occurs secondary to persistent pain, stiffness, and arthritis. A thorough understanding of the biomechanics of the injured PIPJ, the principles of its treatment, and the available treatment options is essential to the proper management of these injuries.

Patients and Methods: Ranodmized clinical trials (RCT) were the gold standered to obtain the evidence followed by non randomized trials, available systematic review and meta-analysis were restored to whenever available. In this systematic review of management of acute dorsal unstable fracture-dislocations of the proximal interphalangeal joints of the fingers

Objective: To review systematically the results of management of acute dorsal unstable fracture-dislocations of the proximal interphalangeal joints of the fingers.

Data Sources: Medline databases (PubMed, Medscape, ScienceDirect. EMF-Portal) and all materials available in the Internet till 2019.

Results: There are several items for proper postoperative evaluation which include: pain, stiffness, postoperative infection, postoperative instability, and reoperation. Regarding the presence of postoperative pain; the lowest incidence proportion was in internal fixation with screws, while the largest proportion was in external fixation technique. Stiffness incidence was the lowest (10%) in hemi-hamate arthroplasty with a highest incidence at external fixation technique. Regarding the complications internal fixation has the lowest incidence of infection (0%), while external fixation had a high incidence (31%). On the other hand, fixation failure was higher in volar plate arthroplasty than other techniques, with a lowest incidence in internal fixation using wires. Finally, joint instability reached the highest incidence in hemi-hamate arthroplasty and external fixation with lowest incidence in Kirschner wire fixation.

Conclusion: There is little evidence in the literature to suggest superiority of various methods to treat fracture dislocation of PIP joint .According to our systematic review, internal fixation with screws (when feasible) may give acceptable outcomes with low rate of complications. On the other hand, usage of external fixation may have a high incidence of post-operative pain, stiffness, subluxation and infection.

Keywords: Proximal Interphalangeal, ORIF, Unstable, Fracture, Dislocation, External fixation, Proximal interphalangeal fracture, Proximal interphalangeal dislocation.

List of Contents

Title	Page No.
List of Tables	
List of Figures	ii
List of Abbreviations	v
Introduction	1
Aim of the Work	5
Review of Literature	
Anatomy	6
Dorsal Proximal Interphalangeal Joint Fractures/Dislocations	
Materials and Methods	
Results of the study	
Discussion	
Summary	73
Conclusion	
References	
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	The titles and dates of the 22 papers i and type of each of them.	
Table (2):	Publications by years.	57
Table (3):	Types of papers.	58
Table (4):	Mean age of the study population	59
Table (5):	Sex Distribution of the study population	60
Table (6):	Techniques used for fracture fixation	61
Table (7):	Techniques used for fracture fixation (O & Complications open reduction fixation by wires).	internal
Table (8):	Techniques used for fracture fixation (Ou Complications kirschner wire fixation)	
Table (9):	Techniques used for fracture fixation (O & Complications internal fixation by scr	
Table (10):	Techniques used for fracture fixation (0 & complications volar plate arthroplast)	
Table (11):	Techniques used for fracture fixation (0 & Complications external fixation)	
Table (12):	Techniques used for fracture fixation (O & complications hemi-hamate arthropla	
Table (13):	Techniques used for fracture fixation (0 & complications).	utcome
Table (14):	Incidence proportions	70

List of Figures

Fig. No.	Title Page N	10.
Fig. (1):	Axial view of PIPJ. Intraoperative view with the PIPJ shot gunned open	7
Fig. (2):	Lateral view of proximal phalanx	7
Fig. (3):	Osseous biomechanics	9
Fig. (4):	Lateral view of collateral ligament complex	10
Fig. (5):	Sagittal orientation of collateral ligament complex	12
Fig. (6):	Anatomy of the soft-tissue stabilizers of the proximal interphalangeal joint	13
Fig. (7):	Volar plate (VP)	15
Fig. (8):	Volar plate anatomy	16
Fig. (9):	Volar plate mechanics: 3 phases of volar plate motion: sliding, elevation, and rolling	17
Fig. (10):	Lateral plain radiograph shows the (V sign) in which joint subluxation or dislocation is present	19
Fig. (11):	Illustration showing fracture stability	20
Fig. (12):	Thumb spica cast.	22
Fig. (13):	Figure of 8 splint.	23
Fig. (14):	Dynamic external fixation technique	24
Fig. (15):	Dynamic External Fixation Device	26
Fig. (16):	Transarticular k-wire in association with extension blocking wire	28
Fig. (17):	Transarticular wire to hold reduction of dorsal PIP fracture-dislocation.	30
Fig. (18):	Intraoperative fluoroscopic imaging demonstrating congruent reduction after placement of the K-wire	31

List of Figures cont...

Fig. No.	Title Page I	No.
Fig. (19):	Lateral intraoperative fluoroscopic view of a dorsal proximal interphalangeal joint fracture-dislocation reduction and fixation.	32
Fig. (20):	Lateral radiograph for ORIF postoperative of ORIF.	34
Fig. (21):	Volar plate approach	
Fig. (22):	Postoperative x-rays showing the reduced PIP joint and stabilized with K-wires	36
Fig. (23):	Radiograph showing intrafregmentory screw and blocking wire	37
Fig. (24):	Radiograph showing miniplate	38
Fig. (25):	Intraoperative photograph of shot-gunning and hyperextending the interphalangeal joint	41
Fig. (26):	Intraoperative fluroscopic image	
Fig. (27):	Illustrations showing the donor site and the recipient site at the volar middle phalanx	46
Fig. (28):	The Hemihamate Graft Is Contoured And Secured To Remaining Portion Of The Middle Phalanx Via Screws.	48
Fig. (29):	Publications by years	
Fig. (30):	Types of papers	
Fig. (31):	Techniques used for fracture fixation	
Fig. (32):	Techniques used for fracture fixation (Outcome & Complications kirschner wire fixation)	
Fig. (33):	Techniques used for fracture fixation (Outcome & Complications internal fixation by screw)	65

List of Figures cont...

Fig. No.	Title Pag	ge No.
Fig. (34):	ig. (34): Techniques used for fracture fixation (Outcome & Complications external fixation).	
Fig. (35):	Techniques used for fracture fixation (Outco & complications volar plate arthroplasty)	
Fig. (36):	Techniques used for fracture fixation (Outco & complications hemi-hamate arthroplasty)	
Fig. (37):	Techniques used for fracture fixation (Outco & complications)	

List of Abbreviations

Abb.	Full term
ACL	Anterior cruciate ligament
CMC	Carpometacarpal
DASH	Disabilities of the Arm, Shoulder, and Hand questionnaire
DFD	Dorsal fracture dislocation
DIP	Distal interphalangeal Joint
ORIF	Open reduction and internal fixation
PCL	Posterior cruciate ligament
PIPj	Proximal interphalangeal joint
RCT	Ranodmized clinical trials
ROM	Range of motion
TFCC	Triangular fbrocartilage complex
VAS	Visual analog scale

Introduction

Fracture-dislocations of the proximal interphalangeal joint (PIPJ) are common injuries that, when inappropriately treated dysfunctional joint occurs secondary to persistent pain, stiffness, and arthritis. A thorough understanding of the biomechanics of the injured PIPJ, the principles of its treatment, and the available treatment options is essential to the proper management of these injuries ⁽¹⁾.

Phalangeal fractures and dislocations account for nearly half of all hand injuries presenting to the emergency room ⁽²⁾. Finger fractures occur most commonly in young men in the second to fourth decades of life and are often the result of athletic participation ⁽³⁾.

PIPJ fracture dislocations can be classified into 3 types based on the fracture geometry of the base of the middle phalanx:(1) palmar lip fractures, (2) dorsal lip fractures, and (3) pilon fractures. These fracture patterns are the result of characteristic mechanisms of injury (1).

PIPJ fracture dislocations occur commonly as a result of an axial load, the specific fracture pattern depends on the amount of flexion of the PIPJ at the time of axial loading. The movements of the hand and body in different sports have a direct impact on the type of finger injury sustained ⁽⁴⁾.

1