

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

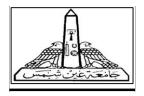
شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات



يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Faculty of Women for Arts, Science and Education

Biochemistry and Nutrition Department

Effect of Ginger Nanoparticles on Hepatotoxicity and Nephrotoxicity Induced by Carbon Tetrachloride in Rats

Thesis

Submitted to Faculty of Women - Ain Shams University in Partial Fulfillment for the Master degree in science (M.Sc.) in Biochemistry and Nutrition

By

Sanaa Yasser Abd-Elrhman

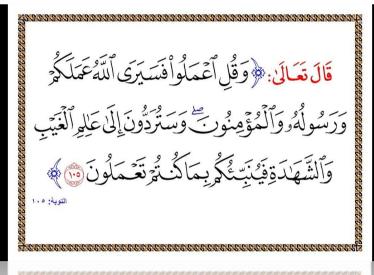
B.Sc. in science Biochemistry and Nutrition, 2015
Biochemistry and Nutrition Department
Faculty of Women for Arts, Science and Education
Ain Shams University

Supervisors

Prof. Dr. Hanaa Mostafa Abd El -Fattah

Professor of Nutrition, Biochemistry and Nutrition Department Faculty of Women for Arts, Science and Education Ain Shams University

Dr. Gehan Mohammed Morsy


Lecturer of Biochemistry and Nutrition, Biochemistry and Nutrition Department Faculty of Women for Arts, Science and Education Ain Shams University

Dr. Shimaa Abd El-Aziz Elmasry

Lecturer of Biochemistry and Nutrition, Biochemistry and Nutrition Department Faculty of Women for Arts, Science and Education

Ain Shams University

(2021)

Acknowledgement....

First of all, all gratitude is due to *Allah* almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

I would like to thank my supervisor *Prof. Dr. Hanaa Mostafa Abd El -Fattah*, Professor of nutrition, Biochemistry and Nutrition Department, Faculty of Women for Arts, Science and Education, Ain Shams University, not only for suggesting, planning the point of research and supervising it, but also for her great help, guidance and appropriate choice of the research topic.

A note of appreciation goes to **Dr. Gehan Mohammed Morsy**, lecturer of Biochemistry and Nutrition, Biochemistry and Nutrition Department, Faculty of Women for Arts, Science and Education, Ain Shams University, for her great efforts, precious comments and encouragement, she has been a tremendous mentor for me.

I am also thankful to **Dr. Shimaa Abd El-Aziz Elmasry**, lecturer of Biochemistry and Nutrition, Biochemistry and Nutrition Department, Faculty of Women for Arts, Science and Education, Ain Shams University, for her big efforts, patience and encouragement, continuous follow up, she has an important role in choosing the appropriate research topic.

Deep thanks were offered to **Prof. Dr Kawkab Ahmed**, professor of pathology, Pathology Department, Faculty of Veterinary Medicine, Cairo University for her faithful help in histological examination.

Dedication....

This work is dedicated for the soul of my grandfather, may God bless his soul.

Also, I dedicate this work to my parents; who have raised me to be the person I am today. My "father" did not only raise and nurture me but also taxed himself dearly over the years for my education and intellectual development. My "mother" has been a source of motivation and strength during all hard moments. Thanks for their love, guidance and support that you have always given me.

As well as, I dedicated this work for my family they are the driving force in my life and career, without their love non of this would matter, throught my life they have actively supported me in my determination to find and realize my potential and to make this contribution to our world.

Last but not least, with great pleasure, I would like to express my sincere gratitude to my colleague " Mahmoud Ghonam" whose help, support and encourage me all the time.

Abstract

Effect of Ginger Nanoparticles on Hepatotoxicity and Nephrotoxicity Induced by Carbon Tetrachloride in Rats. Sanaa Yasser Abd-Elrhman, Master degree, Biochemistry and Nutrition Department, Faculty of Women for Arts, Science and Education, Ain Shams University.

Ginger is a well-known to possess antioxidant and anti-inflammatory properties, also it is confirmed that the milling of ginger to nanoscale improves its active compounds solubility and bioavailability, so that this study aimed to investigate the effect of ginger (G), ginger nanoparticles (GNPs), ginger nanobase (GNB) and silymarin (SM) on hepato-renal toxicity induced by carbon tetrachloride (CCl₄) in rats. Fifty-four adult male albino rats were divided into 6 groups with 9 rats in each. Group (1): (Normal control) rats were received distilled water daily orally and injected intraperitoneally (i.p.) with a single dose of corn oil (1 ml/kg B.W) at the end of the 4th week of the experiment. Group (2): Rats were received distilled water daily orally and injected with a single dose of CCl₄ diluted with corn oil (1:1) (1 ml/kg B.W i.p.) at the end of the 4th week of the experiment. Groups (3), (4) and (5): Rats were received orally 50 mg/kg B.W/day of G, GNPs and GNB, respectively for 8 weeks and injected with CCl₄ as group 2. Group (6): Rats were received 100 mg/kg B.W/day of SM orally for 8 weeks and injected with CCl₄ as group 2. Our results indicated that CCl₄ caused a significant increase in serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) enzymes activities and serum creatinine, urea, uric acid and cystatin-C (Cys-C) levels. Also, increasing of serum tumor necrosis factor- alpha (TNF- α), interleukin-1beta (IL-1β), malondialdehyde (MDA) and nitric oxide (NO) levels, while serum total antioxidant capacity (TAC) level, hepatic catalase (CAT) and superoxide dismutase (SOD) enzymes activities showed a significant decrease as compared to healthy group. Also some histopathological changes in liver and kidney tissues were observed.

Oral administration of G, GNPs, GNB and SM caused an amelioration of liver and kidney functions, inflammatory markers and the oxidant - antioxidant status with an improvement in liver and kidney tissues. In conclusion, our data proved that using ginger in the form of GNPs and GNB is more efficient in ameliorating hepatorenal toxicity induced by CCl₄ than using native ginger. These results were confirmed by the results of histopathological examination of liver and kidney tissues in different rats groups.

4- AP	4- Aminophenazone
5- LOX	5-Lipoxygenase
α-SMA	Alpha smooth muscle actin
A _{sample} or A _{standard}	Absorbance of sample or standard
ABC	Avidin-biotin-peroxidase complex
AlCl ₃	Aluminum trichloride
ALP	Alkaline phosphatase
ALT	Alanine aminotransferase
AP-1	Activator protein-1
Apaf-1	Apoptotic protease activating factor -1
APCs	Antigen presenting cells
ATP	Adenosine triphosphate
AST	Aspartate aminotransferase
BD	Bile duct
BUN	Blood urea nitrogen
B.W	Body weight
CAT	Catalase
CCl ₃ ·	Trichloromethyl radical
CCl ₃ O ₂ ·	Peroxy trichloromethyl radical
CCl ₄	Carbon tetrachloride

COX-2	Cyclo-oxygenase-2
CV	Central vein
CYP2E1	Cytochrome P4502E1
Cys-C	Cystatin C
DCPS	2-4 Dichlorophenol sulfonate
DHBS	3, 5-Dichloro -2- hydroxybenzene sulfonic acid
DLS	Dynamic light scattering
DNA	Deoxyribonucleic acid
DSS	Dextran sulphate sodium
eNOS	Endothelial nitric oxide synthase
EDTA	Ethylenediamine tetra acetic acid
ELISA	Enzyme-linked immune-sorbent assay
FER	Feed efficiency ratio
FIAU	2'-deoxy-2'-fluoroarabinosyl derivatives of 5-iodouracil
G	Ginger powder
GAE	Gallic acid equivalent
GDNPs	Nanoparticles derived from edible ginger or ginger derived nanoparticles
GFR	Glomerular filtration rate
GGT	Y-Glutamyl transferase
GNB	Basic ginger nanoparticles or ginger nanobase
GNPs	Zingiber officinale nanoparticles or ginger nanoparticles
GSH	Reduced glutathione

H_2O_2	Hydrogen peroxide
НА	Hepatic artery
H and E	Hematoxylin & Eosin
HDL	High density lipoprotein-cholesterol
HPLC	High performance liquid chromatography
HRP	Horse-radish peroxidase
HSC or Ito	Hepatic stellate cells or Quiescent stellate cells
iNOS	Inducible NO synthase
i.p	Interperitonealy
ICAM-1	Intracellular cell adhesion molecules -1
IL-1β	Interleukin-1β
IL-1	Interleukin-1
IL-2	Interleukin-2
IL-6	Interleukin-6
IL-8	Interleukin-8
KC	Kupffer cells
KLF6	Kruppel-like factor-6
LDL	Low density lipoprotein- cholesterol
LPS	Lipopolysaccharide
LSD	least significant difference
MAPK	p38 mitogen-activated protein kinase
MDA	Malondialdehyde
Mir or miRNA	micro-ribonucleic acid

MPT	Mitochondrial permeability transition
MMP-9	Matrix metalloproteinase- 9
m-RNA	messenger-ribonucleic acid
Na ₂ CO ₃	Sodium carbonate
NaCl	Sodium chloride
NaClO	Sodium hypochlorite
NaOH	Sodium hydroxide
NADH	Reduced nicotinamide adenine dinucleotide
NADP ⁺	Nicotinamide adenine dinucleotide phosphate
NADPH	Reduced nicotinamide adenine dinucleotide phosphate
NE	Nanoemulsion
NF-κB	Nuclear factor kappa light chain enhancer of activated B cells or nuclear factor kappa - B
NI	Nanoinosomes
NK	Natural killer cells
NKT	Natural killer T cells
NL	Nanoliposomes
NO	Nitric oxide
NO ₂	Nitrogen dioxide
NOS	Nitric oxide synthase
NOx	Total nitrate/nitrite
NPs	Nanoparticles
Nrf2	Nuclear factor E2-related factor2
NSAIDs	Non-steroidal anti-inflammatory drugs

O_2	Super oxide anion
O.D.	Optical density
ONOO ₂	Peroxynitrite
PBS	Phosphate buffer saline
PD	Parkinson's disease
PECAM-1	Platelet endothelial cell adhesion molecules -1
PGE2	Prostaglandin E2
PLGA	Poly lactic co glycolic acid
PMA	Phorbol 12-myristate 13-acetate
POD	Peroxidase
PV	Portal vein
QE	Quercetin equivalent
SAA	Serum amyloid A
SABC	HRP (horse-radish peroxidase) -streptavidin
	conjugate
S.Cr	Serum creatinine
SE	Standard error
SLNs	Solid lipid nanoparticles
SM	Silymarin
SMs	[6]-Shogoal loaded micelles of polyethylene
	glycol and linoleic acid Conjugates
SOD	Superoxide dismutase
SPSS	Statistical Package for Social Science
	program
SSLNs	[6]- Shogaol-loaded solid lipid nanoparticles
rpm	Round per minute

rRNA	Ribosomal RNA
RNS	Reactive nitrogen species
ROS	Reactive oxygen species
TAC	Total antioxidant capacity
TAGs	Triacylglycerols
TCDD	Tetracholorodibenzo-p-dioxin
TIMP-1	Tissue inhibitor metalloproteinase proteins-1
TNFR-1	Tumor necrosis factor receptor-1
TNF-α	Tumor necrosis factor- alpha
TMB	3,3',5,5'-tetramethylbenzidine
uPA	Urokinase-type plasminogen activator
VCAM-1	Vascular cell adhesion molecule-1
VEGF	Vascular endothelial growth factor
VLDL	Very low density lipoprotein- cholesterol
WR	working reagent
XO	Xanthine oxidase

List of Content

	Page
Introduction	1
Aim of the work	4
Review of literature	5
1. <u>Liver</u>	5
1.1. Liver Anatomy	. 5
1.2. Liver Injury	11
1.3. Liver Injury and Oxidative stress	12
1.4. Classification of Liver Injury	13
1- Disruption of Calcium Homeostasis Leading to Cell Blebbing and Lysis.	Surface 14
2- Canalicular Injury	14
3- Metabolic Bioactivation of Chemicals via Cytochrome Reactive Species	P450 to 14
4- Stimulation of Autoimmunity	15
5- Stimulation of Apoptosis	. 15
6- Mitochondrial Injury	. 16
1.5. Hepatotoxicity	16
2. <u>Kidney</u>	17
2.1. Kidney Anatomy	17
2.2. Kidney Injury and Oxidative Stress	. 22