

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

Ain Shams University Faculty of education Physics Department

Effect of Zn addition on some physical properties of Se-Te chalcogenide system

Thesis

Submitted for the degree of Master of Teacher Preparation in Science (Physics)

By

Shimaa Hassan Ibrahim Mabrouk

B.Sc. and Education, Gen. Diploma (Physics), Spec. Diploma (Physics).

To

Physics Department

Faculty of education-Ain Shams University

Supervised by

Prof.Dr. Heba Elgharip Atyia Ass.prof. Mamduh Mohamed Abdel Aziz

Prof. physics Dept, faculty of education Ain Shams University Ass. Prof. physics Dept, faculty of education Ain Shams University

Dr. Shenouda Shanda Shenouda Fam

Dr. physics Dept, faculty of education

Ain Shams University

2020

بسم الله الرحمن الرحيم

"وقل اعملوا فسيرى الله عملكم ورسوله والمؤمنون"

صدق الله العظيم

Ain Shams University Faculty of education Physics Department

Name of Student:

Shimaa Hassan Ibrahim Mabrouk

Title of Thesis:

Effect of Zn addition on some physical properties of Se-Te chalcogenide system.

Supervised By:

Approved

Prof. Dr. Heba Elghrip Atyia

Assistant prof. Mamduh Mohamed Abdel Aziz

Dr. Shenouda Shanda Shenouda Fam

Acknowledgement

ACKNOWLEDGMENT

All thanks for Allah, The Lord of all being.

First and foremost, the author likes to extend my sincere gratitude to my research guide prof. Dr. Heba Elghrip Atyia for her dedicated help, advice, inspiration, encouragement, continuous support, continuous supervision, valuable suggestions and fruitful discussion.

I am grateful to Dr. Mamduh Mohamed Abdel Aziz for his help, useful advice, valuable guidance and supervision.

My special words of thanks should also go to Dr. Shenouda Shanda Shenouda for his continuous support and supervision, cooperation, useful recommendations and valuables help.

Special thanks are given to Prof. Dr. Radwan Hamouda, Head of physics department, Faculty of Education, Ain Shams University for his rendering facilities.

I would like to extend my thanks to the staff members of the semiconductor laboratory for their help in offering me the resources in running the thesis.

Finally, I wish to thank my family members for their support and encouragement through my research.

Contents

CONTENTS

	Page
List of figure	1
List of table	6
Abstract	8
Summary	10
Introduction	13
Chapter (1)	
Theoretical background and literature rev	iew
1.1 Amorphous semiconductor materials.	18
1.2. Chalcogenide glasses	18
1.3. Band theory of amorphous semiconductors	20
1.4. Kinetics analysis	22
1.4.1 Classical differential thermal analysis (DTA)	22
1.4.2 Calorimetric DTA	25
1.4.3 Differential Scanning Calorimetry (DSC)	25
1.5. DC Electrical conduction in amorphous	27
semiconductors	
1.6 Electrical switching phenomenon	29
1.6.1 Definition of switching phenomenon	29
1.6.2 Classification of switching and	30
memory characteristics	
1.6.3 Threshold switches features	32
1.6.4 Memory switches	33
1.6.5 Switching mechanisms	34
1.7.AC conductivity mechanisms in amorphous	38
semiconductors	
1.7.1 AC conduction mechanisms	39
1.7.1.1Quantum-mechanical tunneling (QMT) model	39
1.7.1.2 Relaxation due to hopping	42
1.8. Dielectric properties of semiconductors.	46
1.9. Optical properties of chalcogenide glasses.	50
1.9.1 Absorption at fundamental absorption edge	50
1.9.2 Types of electronic transitions.	53

Contents	
1.9.3 Determination of the optical constants	55
1.10 Some previous literature review	57
•	
Chapter (2)	
Experimental technique	
2.1. Preparation of the studied compositions	64
2.1.1 Preparation of bulk form	64
2.1.2 Preparation of thin film form	66
2.2 Structural identification and thermal analysis	69
of the prepared compositions.	
2.2.1 X-ray diffraction (XRD) technique	69
2.2.2 Energy dispersive x-ray spectroscopy analysis.	69
2.2.3 Differential thermal analysis (DTA).	71
2.3 Electrical measurements	73
2.3.1 Dc electrical conductivity measurements.	73
2.3.2 Ac conductivity and dielectric	73
Properties measurements.	
2.3.3 Switching phenomenon measurements.	76
2.4Optical measurements.	79
Chapter (3)	
Result and discussion	
3.1. Structure identification	82
3.1.1. Energy dispersive x-ray analysis	82
3.1.2. X-ray Diffraction	82
3.2. Thermal Analysis	86
3.2.1. Differential thermal analysis (DTA) thermogram	m 86
3.2.2. Glass transition kinetics aspects	88
3.2.2.1. Determination of critical heating rate β_c .	88
3.2.2.2. Determination of activation energy of glass	93
transition E _g	
3.2.3. Crystallization kinetics aspects	96
3.2.3.1. Determination of activation energy of	96
crystallization E _c .	

Contents

3.2.3.2. Determination of Avrami exponent n_a and	101
the order of dimensional growth m _a .	
3.2.4 Thermal Stability	104
3.3DCelectricalconductivity	108
3.4 Switching phenomenon.	111
3.4.1 Current–Voltage characteristic curves	111
3.4.2 Threshold resistance R _{th}	114
3.4.3 Threshold power P _{th}	118
3.4.4 Threshold electric field E _{th}	119
3.4.5 Evaluation of the Switching mechanism	119
3.4.5.1. Film thickness dependence of threshold	121
voltage V _{th}	
3.4.5.1. Temperature dependence of threshold	124
voltage V _{th}	
3.4.5.3. Breakdown temperature difference $\Delta T_{breakdo}$	own 129
3.5 Ac electric conductivity and dielectric	131
properties.	
3.5.1. Temperature and frequency dependences	131
of ac conductivity σ_{ac}	
3.5.1.1 Temperature dependence of the ac	131
conductivity σ_{ac}	
3.5.1.2 Frequency dependence of the ac	136
conductivity σ_{ac}	
3.5.2 Dielectric properties of amorphous Se ₈₈ Te ₁₂	140
and Se ₈₈ Te ₈ Zn ₄ films.	
3.5.2.1 Frequency and temperature dependence of	140
dielectric constant ε_1	
3.5.2.2 Frequency and temperature dependence of	142
dielectric loss ε_2	
3.6. Optical properties	147
3.6.1. The spectral distributions of the	147
transmittance $T(\lambda)$ and reflectance $R(\lambda)$.	
3.6.2. Determination of optical constants.	149
3.6.3. The spectral distribution of the absorption	149
coefficient (a)	
3.6.4. Dispersion energy parameters E_0 and E_d .	155

\sim			
Co	nta	ากร	C
	ILLC		٠,

3.6.5 Determination of some optoelectric parameters	157
Conclusion	165
Reference	169
Arabic Summary	

List of figures

List of Figures

	Page
Fig. 1.1Aschematic density of state distribution,	22
where the number of states per unit volume in unit	
energy interval, N(E), is plotted against the electron	
energy, E.	
Fig. 1.2 Differential thermal analysis DTA	24
(a) classical parameter; (b) heat flux configuration;	
(c) typical DTA curve	
Fig. 1.3 Differential scanning calorimetry;	26
(a) Apparatus; (b) typical DSC curve	
Fig. 1.4 Classification of switching and memory	31
characteristic.(a) Negative resistance device,	
(b) Negative resistance device with memory,	
(c) switching device, (d) switching device with	
memory.	
Fig. 1.5 The characteristic curve for thin film of	35
amorphous semiconductors (a) threshold switching	
(b) memory switching	
Fig. 1.6 Spectral dependence of the optical absorption	52
coefficient α in amorphous semiconductor.	
Fig. 1.7 Types of electronic transitions.	54
Fig. 2.1 The electric sensitive balance.	65
Fig. 2.2 Schematic representation for the oscillatory	65
furnace.	
Fig. 2.3 The Coating unit.	68
Fig. 2.4 The evaporative molybdenum boat	68
Fig. 2.5 The x-ray diffraction unit.	70
Fig.2.6 (a) A micro-DTA Shimadzu apparatus	72
(DTA-50) model (b)A typical DTA thermo gram.	
Fig. 2.7 The programmable automatic RCL meter	74
(PM 6304 Philips).	
Fig. 2.8 The schematic view of fabrication of	75
sandwich structure.	

List of figures

Fig.2.9 A schematic illustrate the cell used for I-V	77
measurements	
Fig. 2.10 The circuit used for measuring the I-V	78
characteristic curves	
Fig. 2.11 The double beam spectrophotometer	80
(Jasco, model V-750)	
Fig. 3.1. EDX spectrum of (a) $Se_{88}Te_{12}$ and	83
(b) Se ₈₈ Te ₈ Zn ₄ compositions	
Fig. 3.2. SEM images for the (a) $Se_{88}Te_{12}$ and	84
(b) Se ₈₈ Te ₈ Zn ₄ compositions	
Fig. 3.3. XRD patterns of $Se_{88}Te_{12}$ and $Se_{88}Te_{8}Zn_{4}$	85
In (a) Powder and (b) thin film forms.	
Fig.3.4 Differential thermal analysis thermogram of	87
(a) Se ₈₈ Te ₁₂ and (b) Se ₈₈ Te ₈ Zn ₄ glassy composition	
at different heating rates.	
Fig. 3.5. Heating rate dependence of (a) the	91
crystallization and (b) glass transition temperatures	
for Se ₈₈ Te ₁₂ and Se ₈₈ Te ₈ Zn ₄ glassy compositions.	
Fig. 3.6. Plots of a function F, $(F = \ln(\beta/T_p),$	95
$ln(\beta/T_p^2)$ and $ln(\beta)$) versus $1000/T_g$ for $Se_{88}Te_{12}$ and	
Se88Te8Zn4 glassy compositions.	
Fig. 3.7. Plots of a function G, $(G = \ln(\beta/T_p),$	99
$\ln(\beta/T_p^2)$, $\ln(\beta/T_p-T_{c-})$, and $\ln(\beta)$) versus $1000/T_p$ for	
Se ₈₈ Te ₁₂ and Se ₈₈ Te ₈ Zn ₄ glassy compositions.	
Fig. 3.8. Extent of crystallized volume fraction χ as a	100
function of temperature at different heating rates for	
(a) Se ₈₈ Te ₁₂ and(b) Se ₈₈ Te ₈ Zn ₄ glassy compositions.	
Fig. 3.9. Plots of a $\ln[-\ln(1-\chi)]$ versus (a,b) 1000/T at	102
different heating rate and (c,d) versus $\ln \beta$ at different	
fixed temperatures for Se ₈₈ Te ₁₂ and Se ₈₈ Te ₈ Zn ₄	
glassy compositions.	
Fig.3.10 The temperature dependence of the dc	109
electrical conductivity of (a) Se ₈₈ Te ₁₂ and	
(b) Se ₈₈ Te ₈ Zn ₄ films with different thicknesses.	