

بسم الله الرحمن الرحيم


-Call 1600-2

COEFOR COEGORIO

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

CORRECT CORRECTOR

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

-Caro-

COEFERS CARGORNOR

بعض الوثائق

الأصلية تالفة

COLEGO COLEGORIO

بالرسالة صفحات

لم ترد بالأصل

COEFECT CARGOSTON

THERMAL SPRAYING OF WEAR-RESISTANT COATINGS ON ALUMINUM ALLOYS BY CAST IRON POWDERS

Blovch

Thesis

Submitted to

The Faculty of Science - Cairo University

Ву

Magdi Farouk Morks

For

The Degree of

Doctor of Philosophy

CENTRAL METALLURGICAL RESEARCH AND DEVELOPMENT
INSTITUTE
EL – TEBBIN – CAIRO
2002

APPROVAL SHEET FOR SUBMISSION

Title of Ph.D. Thesis:

"THERMAL SPRAYING OF WEAR-RESISTANT COATINGS ON ALUMINUM ALLOYS BY CAST IRON POWDERS"

Name of the candidate: Magdi Farouk Morks

This thesis has been approved for submission by the SUPERVISORS:

1. Prof. Dr. / Mohamed Wahid El-Din Khalil

Signature

المحروثهن

2. Ass. Prof. / Madiha A. Shoeib

Signature

مدمح يحصر سيمثر

Prof. Dr. Sadek E. Abdou

Chairman of Department of Chemistry

Faculty of Science-Cairo University

ABSTRACT

Name of Candidate:

Magdi Farouk Morks

Title of Ph.D. Thesis:

Thermal Spraying of Wear-Resistant Coatings on

Aluminum Alloys By Cast Iron Powders

Degree:

(Ph.D.) Thesis, Faculty of Science, Department

of Chemistry-Cairo University

The objective of this study is to improve the wear resistance properties of dicasting aluminum alloy materials by spraying superior wear-resistant coating of cast iron via plasma-spraying approach. Since graphite in cast iron is the main role for superior wear resistance, our objective is not only to spray cast iron, but also to get the optimum spray parameters required for graphitization. The effects of spray parameters such as substrate temperature, chamber pressure, particle size, spray distance and powder composition on splat morphology, microstructure, pore formation and graphitization have been studied. The coating microstructure (including graphite) was examined by X-ray diffraction and observed by SEM. The wear and friction properties were evaluated.

Key words: cast iron, plasma spraying, aluminum alloys, microstructure, graphite, solidification, wear, friction

Supervisors: "

1. Prof. Dr. / Mohamed Wahid El-Din Khalil

2. Ass. Prof. / Madiha A. Shoeib

Prof. Dr./Sadek, E. Abdou

Chairman of Department of Chemistry
Faculty of Science-Cairo University

ACKNOWLEDGEMENT

The author wishes to express his gratitude to **Prof. Dr. Mohamed Wahid El-Din Khalil**, Prod. of Physical Chemistry, Faculty of Science, Cairo
University, for his interest and sponsorship of this work.

I would like to acknowledge gratefully Ass. Prof. Madiha A. Shoeib, Head of Metal Coating and Protection Laboratory, Central Metallurgical R&D Institute (CMRDI) for her constant support and supervision.

I am greatly indebted to **Prof. Y. Tsunekawa**, Head of Material Processing Laboratory, Toyota Technological Institute (TTI), Nagoya-Japan, for his suggesting this research and his constant support, supervision and accepting me to achieve the experimental part of this thesis in his laboratory.

I also would like to thank all my colleges in Toyota Technological Institute and CMRDI for their assistant.

CONTENTS

INTRODUCTION	Page	
	v-ix	
CHAPTER I: LITERATURE SURVEY		
1.1 Processes Development	1	
1.2 Economic Need of Thermal Spraying	2	
1.3 Principles of Thermal Spraying	3	
1.4 Thermal Spray Processes		
1.4.1 Combustion processes		
1.4.1.1 Flame spray processes	3	
1.4.1.2 D-Gun process	5	
1.4.1.3 HVOF process	6	
1.4.2 Plasma Process	7	
1.4.2.1 Air plasma spraying	7	
1.4.2.2 Vacuum plasma spraying	9	
1.5 Principle Difference between Flame and Plasma		
Spraying	10	
1.6 Energy Transfer in Plasma Spraying	10	
1.7 Unique Features of the Plasma Spray Process	11	
1.8 Plasma Spray Parameters	13	
1.9 Plasma Characteristics	13	
1.10 Feed Materials	14	
1.11 Powder Injection	15	
1.12 Coating Formation	16	
1.13 Splat Morphology	17	
1.14 Splat Flattening and Solidification	18	
1.15 Cooling Rates of Splats	22	
1.16 Effect of Oxidation on Splat Formation	24	

1.17 Mechanism of Splat Deformation	25
CHAPTER II: EXPERIMENTAL PROCEDURES	27
2.1 Materials	
2.1.1 Spray materials	27
2.1.2 Substrate material	32
2.2 Plasma Spray Apparatus	32
2.3 Spraying Procedure	
2.3.1 Sample preparation	34
2.3.2 Spray conditions	34
2.4 Splat Characterization	
2.4.1 Morphology	35
2.4.2 Flattening ratio	35
2.4.3 Rear-side view	36
2.4.4 Splat adhesion	36
2.4.5 Splat microstructure	36
2.5 Coating characterization	
2.5.1 X-ray Diffraction	37
2.5.2 Hardness Test	37
2.5.3 Friction Test	37
2.5.4 Wear Test	38
CHAPTER III: RESULTS AND DISCUSSION	
3.1 Effect of Preheat Substrate Temperature	39
3.1.1 Splat morphology	40
3.1.2 Splat flattening	42

3.1.3 Temperature gradients within the substrate	44
3.1.4 Pores formation at the interface	45
3.1.5 Splat adhesion and reaction layer formation at	
the interface	48
3.1.6 Microstructure and graphite formation in splats	48
3.2 Effect of Chamber Pressure (P _C)	
3.2.1 Splat morphology	54
3.2.2 Splat flattening	57
3.2.3 Splat adhesion	58
3.2.4 Splat oxidation	60
3.2.5. Ridge formation	64
3.2.6 Solidification rate and splat microstructure	64
3.3 Effect of Particle Size (d _P)	
3.3.1 Splat morphology	69
3.3.2 Splat Flattening	72
3.3.3 Splat adhesion	72
3.3.4 Pore formation	74
3.3.5 Estimation of solidification time (t _S) from	
calculated splat thickness	77
3.3.6 Splat microstructure	
3.3.6.1 Splat phases	80
3.3.6.2 Graphite structure	82
3.4 Effect of Spray Distance (d _S)	
3.4.1 Splat morphology	84
3.4.2 Splat flattening	88
3.4.3 Splat adhesion	88

3.4.4 Splat microstructure	90
3.5 Effect of plasma gases flow rates	94
3.5.1 Flow rate and microstructure	95
3.6 Effect of Powder Composition	98
3.6.1 Splat morphology	99
3.6.2 Splat adhesion	99
3.6.3 Splat microstructure	101
3.7 Coating Formation	104
3.7.1 Friction Test	105
3.7.2 Coating Microstructure	107
3.7.3 Hardness Test	112
3.7.4 Wear Test	113
SUMMARY	117
CONCLUSION	122
REFERENCES	123

To My Family

I would like to present this thesis as a gift to my mother who I miss her too much. Also, I would like to submit my gratitude to my wife Narges and my daughter Maria who give me a lot of their time and effort. I deeply thank my Father Farouk Morks Hanna for his support and advise. I cannot forget my brothers and sisters for their helping me to copy and prepare the thesis for submission. God bless all of you.

NTRODUCTION