

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Detection of TNF-lpha as a Cofactor in the Pathogenesis of Nasal Polypi

Thesis

Submitted for partial fulfillment of master degree in Science of Otorhinolaryngeology

By

Zeinab Rezk Abd_elnazer Ali

M.B., B.CH. Faculty of Medicine Ain Shams University

Under supervision of

Prof. Dr. Mohammed Abdelraaof

Professor of otorhinolaryngology Faculty of Medicine, Ain Shams University

Prof. Dr. Tarek Mostafa Kamal

Consultant of Medical Genetics Pediatric Department Ain Shams University

Dr. Ahmed Mahmoud Maarouf

Lecturer of Otorhinolaryngology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2020

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to Prof. Dr./ Mohammed Abdelraaof, Professor of otorhinolaryngology- Faculty of Medicine- Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to Prof. Dr./ Tarek Mostafa Kamal, Consultant of Medical Genetics, Pediatric Department Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to Dr./ Ahmed Mahmoud Maarouf, Lecturer of Otorhinolaryngology, Faculty of Medicine, Ain Shams University, for her great help, active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Zeinab Rezk Abd_elnazer Ali

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	iv
Introduction	1
Aim of the Work	
Review of Literature	
Pathogenesis and Pathophysiology of Nasal	Polyps6
₹ The Role of TNF-α in Pathogenesis of Nasal	polypi18
Materials and Methods	29
Results	34
Discussion	47
Summary	
Conclusion	
References	
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Demographic characteristics of controls:	
Table (2):	Comparison of TNF-α-308G/A prigenotype in cases and controls:	
Table (3):	Comparison of TNF-α-308G/A prallele segregation in cases and con	
Table (4):	Relation between TNF-α-308G/SNP genotype and phenotyp polyposis:	e of nasal
Table (5):	Relation between TNF-α-308G/SNP allele segregation and phenopolyposis:	type of nasal
Table (6):	Relation between sex and T promoter SNP genotype:	
Table (7):	Relation between sex and T promoter SNP allele segregation:	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Types of glands in nasal polyps	8
Figure (2):	Different types of mucous glands polyps	
Figure (3):	Causes of nasal polypi formation	11
Figure (4):	Adenoma theory	12
Figure (5):	The glandular cyst theory	13
Figure (6):	Necrosing ethmoiditis theory	14
Figure (7):	The formation of NP started via an localized deep in the nasal mucosa	
Figure (8):	Glandular hyperplasia theory	16
Figure (9):	Epithelial rupture or necrosis cainflammation and tissue pressure	•
Figure (10):	Signalling pathways leading to cellular responses of TNF	
Figure (11):	Short arm of chromosome 6 demonstration of HLA antigens are complement components and TN other inflammatory proteins	nd some IF-a and
Figure (12):	Histopathological examination of rhinosinusitis with nasal polyposis s	
Figure (13):	TNF-α-308G/A promoter SNP generates and controls	
Figure (14):	TNF-α-308G/A promoter SNF segregation in cases and controls	
Figure (15):	Relation between TNF-α-308G/A SNP genotype and phenotype polyposis	of nasal

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (16):	Relation between TNF-α-308G/A SNP allele segregation and phe nasal polyposis	notype of
Figure (17):	Relation between sex and TNF promoter SNP genotype in cases and the whole study population	, controls
Figure (18):	Relation between sex and TNF promoter SNP allele segregation controls and the whole study popular	in cases,

List of Abbreviations

Full term Abb. AAllele AAHomozygote mutant AFRSAllergic fungal rhino sinusitis AFSAllergic Fungal Sinusitis ASAAcetylsalicylic acid CFCystic fibrosis CRS Chronic rhinosinositis ECPEosinophil cationic protein GGenotype GAHeterozygote GGHomozygote wild HLAHuman lecuocyte antigine ICAM-1.....Intercellular adhesion molecule-1 IL-5Interleukine 5 MAPKMitogen-activated protein kinases MHCMajor histocompatibility complex NARES...... Nonallergic rhinitis with eosinophilia svndrome NF-B.....Nasal fibroblasts binding receptors NPNasal polypi PGE2Prosta gladin E2 SAEStaphylococcus aureus enterotoxin SNP.....Single neculiotide polymorphism TACETNFa converting enzyme

List of Abbreviations

TNFR-I Type I TNF-a receptor TNFRII Type II TNF-a receptor TNF-a Tumour necrosis factor-a TNF-a 308G Tumor necrosis factor alpha VCAM-1 Vascular cell adhesion molecule-1

ABSTRACT

Background: Nasal Polyposis (NP) is a complex multi-factorial disease; associated with several environmental, genetic and inflammatory factors. TNFalpha is one of the major pro-inflammatory cytokines involved in NP pathogenesis. Some of the polymorphisms of this gene affect its expression.

Aim of the Work: To evaluate the polymorphism of TNF-alpha G/A308 gene and its association with nasal polyposis in Egypt.

Patients and Methods: In this case-control study, 25 patients with NP and 25 healthy individuals referred to Ain Shams University hospital were evaluated. After DNA extraction, RFLP-PCR was used to determine polymorphism. Chi-square test was used to compare the frequency distribution of genotype and alleles of TNFalpha gene with NP. The frequency of genotype G/G, A/A and G/A in the NP group was 8, 40 and 52%, and in the control group was 76, 1 and 5 %, respectively.

Results: There was a statistically significant difference between genotype G/G in two groups (P = 0.0001). In addition, the frequency of allele A in patients and controls was 10 and 1%, respectively; and this difference was statistically significant (p = 0.0001). The findings of this study demonstrated that polymorphism in TNF-alpha gene might be a risk factor for NP in Egypt and the minor frequency of TNF-alpha G308A allele in the current study is slightly more than other major populations. However, more investigations with high number of population are necessary in future.

Conclusion: According to scientific evidence on TNF-α gene promoter G/A 308 polymorphism in Egypt, it seems that the pattern of genotypic distribution in all areas is the same. However, we found the greater amount of allele A in this study compared with the control group, and the occurrence of G/A genotype related to NP but for more valid results, a larger sample size is necessary. However on our results this polymorphism might be considered as a risk factor of susceptibility of NP in Egyptian people.

Keywords: Nasal Polypi, Chronic rhinosinositis, Eosinophil cationic protein, Intercellular adhesion molecule-1

Introduction 📚

INTRODUCTION

asal polyposis is one of the most common chronic Inflammatory diseases of mucosa of nose and paranasal sinus causing stuffy nose. Most of the Patients are complaining of nasal obstruction, difficulty of breathing, nasal discharge, post nasal drip, nasal congestion, sinus pain, anosmia and hyposmia. It is not clear why some people develop the chronic inflammation that tends to lead to nasal polyps, or why this chronic inflammation causes polyps in some people and not in others. People with chronic sinus infections, allergic rhinitis, asthma, and cystic fibrosis are more likely to have nasal polyps (Bachert et al., 2014).

During the past 10 to 20 years, many studies have been performed to identify susceptible genes that are associated with nasal polypi-related traits. Despite achievement in identification of candidate genes and their association with formation of nasal polypi. The large challenges remain as the genetic and molecular alterations required for its development and progression are still unclear (Wang, 2008).

Although many inflammatory cytokines have been identified in nasal polypi tissue, the initial trigger that causes