

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

APPLICATIONS OF FRACTIONAL ORDER ELEMENTS AND MEM-ELEMENTS IN ELECTRONIC CIRCUITS

By

Nariman Abdo Khalil Hussein

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

Electronics and Communications Engineering

APPLICATIONS OF FRACTIONAL ORDER ELEMENTS AND MEM-ELEMENTS IN ELECTRONIC CIRCUITS

By Nariman Abdo Khalil Hussein

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

Electronics and Communications Engineering

Under the Supervision of

Professor
Engineering Electronics and Communications
Department
Faculty of Engineering, Cairo University

Prof. Dr. Ahmed Gomaa Radwan

Professor
Engineering Mathematics and Physics
Department
Faculty of Engineering, Cairo University
on leave (Nile University)

Dr. Lobna Ahmed Said

Assistant Professor Engineering Electronics and Communications Department Faculty of Engineering, Nile University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020

APPLICATIONS OF FRACTIONAL ORDER ELEMENTS AND MEM-ELEMENTS IN ELECTRONIC CIRCUITS

By Nariman Abdo Khalil Hussein

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

Electronics and Communications Engineering

Approved by the Examining Committee

Prof. Dr. Ahmed Mohamed Soliman,

Prof. Dr. Ahmed Gomaa Radwan,

Professor, Nile University

Prof. Dr. Mohamed Fathy Abu-Elyazeed,

Prof. Dr. Ahmed Hassan Madian,

External Examiner

Professor, Department of Radiation Engineering - Atomic Energy Authority

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020 Engineer's Name: Nariman Abdo Khalil Hussein

Date of Birth: 28 / 1 / 1989 **Nationality:** Egyptian

E-mail: nariman.abdo89@gmail.com.

Phone: +201093344115 Address: Giza, Egypt Registration Date: 1 / 3 / 2016 Awarding Date: ... / ... / 2020

Degree: Doctor of Philosophy

Department: Electronics and Communications Engineering

Supervisors:

Prof. Dr. Ahmed Mohamed Soliman Prof. Dr. Ahmed Gomaa Radwan

Professor, Nile University Dr. Lobna Ahmed Said

Examiners:

Prof. Dr. Ahmed Mohamed Soliman (Thesis main advisor)

Prof. Dr. Ahmed Gomaa Radwan (Advisor)

Professor, Nile University

Prof. Dr. Mohamed Fathy Abu-Elyazeed (Internal examiner)
Prof. Dr. Ahmed Hassan Madian (External examiner)
(Professor, Department of Radiation Engineering - Atomic Energy Authority)

Title of Thesis:

Applications of fractional order elements and mem-elements in electronic circuits **Keywords:**

Fractional order elements emulator; Fractional order memelements emulator; Fractional filter and inverse filter; Chaotic system

Summary:

This work aims to apply the fractional-order elements and mem-elements in analog circuit design. A general prototype fractional-order filter based on a two-port network concept with four external impedances is investigated. Ten possible generalized topologies are introduced where the necessary network conditions and the critical frequencies are presented. Besides, a generalized prototype topology of fractional order inverse filters (FOIF) is presented based on operational trans-resistance amplifiers and second-generation current conveyor. The fractional-order parameters increase design flexibility and controllability, which is validated experimentally. The fractional-order systems are extended to memristive element modeling. The realization of grounded and floating fractional-order mem-elements (FOMEs) using the generalized emulator. Two- and three-port mutators are used to realize different FOMEs employing different combinations of impedances. The FOMEs are applied to Chau's circuit showing the effect of fractional-order on the chaotic behavior. Circuit simulations and experimental results for the presented circuits are introduced to validate the theoretical findings.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification to any other university or institute.

I further declare that I have appropriately acknowledged all the used sources and have cited them in the reference section.

Name: Nariman Abdo Khalil Hussein	Date:
Signature:	

Acknowledgements

First of all, my thanks go to the members of the examining committee for reading my thesis and their interest in my research.

I would never have been able to successfully finish my dissertation without first the guidance of my advisors and second the support and help from my family.

I would like to express my deepest gratitude to my advisors, Prof. Ahmed Mohamed Soliman, DR. Ahmed Gomaa Radwan, and DR. Lobna Ahmed Said for their excellent guidance and their continuous support of my PhD study. Without their help and advice, I would not be able to write this thesis.

I would like to thank M. Abdel Aziz, M. Amr Mabrouk, and all NISC members for helping me to finialize this work.

I would also like to deeply thank my parents, and my brothers. They were always supporting me and encouraging me with their endless love.

Table of Contents

Di	isclain	ner en	i
A	cknow	vledgements	ii
Li	st of '	Tables	vi
Li	st of I	Figures	vii
Lì	st of S	Symbols and Abbreviations	xii
A	bstrac	<u>:t</u>	xiii
1	Intr	oduction	1
	1.1	Background	1
	1.2	Thesis objectives and motivations	2
	1.3	Thesis organizations	2
^	T •4		_
2		rature Review	5
	2.1	Active Building Blocks	5 5
		2.1.1 Second-generation current conveyor (CCII)	6
		2.1.2 Inverting second-generation current conveyor (ICCII)	7
		2.1.4 Differential voltage current conveyor (DVCC)	8
		2.1.5 Differential current conveyor (DCC) and differential current-voltage	- 0
Г		conveyor (DCVC)	9
		2.1.6 Transconductance Amplifiers	11
		2.1.7 Balanced and double Transconductance Amplifiers	12
		2.1.8 Current Feedback Operational-Amplifier (CFOA)	13
		2.1.9 Operational transresistance amplifier (OTRA)	14
	2.2	Fractional calculus fundamentals	15
	2.3	Fractance Device equivalence	18
	2.4	Fractional-order Applications	20
		2.4.1 Oscillators	20
		2.4.2 Filters	21
		2.4.3 Inverse filters	26
		2.4.4 Stability analysis	
	2.5	Memfractance Device	
	2.6	Application of Memristive Elements	
		2.6.1 Analog Circuits	31
		2.6.2 Neuromorphic Circuits	
		2.6.3 Chaotic System	
		2.6.4 Non Volatile Memory	
	0.7	2.6.5 Crossbar Latches	
	2.7	Two-port Network	33

3	Fra	ctional Order Circuits	35
	3.1	Fractional-order Oscillator	. 35
		3.1.1 Simulations and Practical Results	. 39
	3.2	Fractional-order Inverse filters (FOIF)	. 39
		3.2.1 FOIF based on CCII Family	. 43
		3.2.2 Inverse filters based on OTRA block	. 47
4		ctional Filter Based on Two-port	53
	4.1	The proposed general filter structure	
		4.1.1 The general proposed prototype	
		4.1.2 Two-port filters with one impedance	
		4.1.3 Two-port filters with two impedances	
		4.1.4 Two-port filters with three impedances	
	4.2	Two-port networks based on CCII family	
	4.3	Realizations of Filters using different Networks	
		4.3.1 Case study	
		4.3.2 Circuit simulation and experimental results	. 72
_			0.5
5		ctional Order Memelements Emulators	85
	5.1	The generalized FO memelemenets model	
	5.2	Memristor and Inverse Memristor Emulators	
		5.2.1 The proposed Emulators	
		5.2.2 The Validation results	
	5 0	5.2.3 Inverse Memristor Emulator	
	5.3	FO meminductor and memcapacitor Emulators based on memristor	
		5.3.1 The Proposed Two-port Mutators	
		5.3.2 Simulation results	
		5.3.3 Three-port Proposed Mutatos	
		5.3.4 Simulation of three-port mutator	
		5.3.5 Experimental results of FO memelements using mutators	
		5.3.6 An Universal Emulator	
	5.4	Generalized FO Memelements Emulators	
		5.4.1 Two grounded FO memelements emulators	
		5.4.2 The floating memelements emulators	
		5.4.3 Simulation and Experimental Results	. 114
6	Hig	her-order Memelements in Fractionalorder Domain	123
	6.1	Numerical Analysis Of higher-order FO memelements	. 123
		6.1.1 Second-order FO memelements	
		6.1.2 Third-order FO memelements	
	6.2		
		6.2.1 The structure Emulators	
		6.2.2 PSPICE simulation and Experimental results	

7	App	olications of Fractional-order Memelements	141
	7.1	Relaxation Oscillator	141
	7.2	Chaotic oscillator	141
		7.2.1 First Chua chaotic oscillator	141
		7.2.2 Second Chua's Chaotic Oscillator	147
		7.2.3 The third Chua chaotic Oscillator	150
8	Mer	npedance Theory	155
	8.1	Introduction	
	8.2	PROPOSED MEMELEMENT CIRCUIT MODEL	
	8.3	MEMPEDANCE CIRCUIT MODEL	
		8.3.1 Special Cases	
		8.3.1.1 memristive effect of single element	157
		8.3.1.2 memristive effect of two elements	159
		8.3.2 Mempedance Emulator and the Validation results	166
9	Con	clusions and Future Perspectives	169
Re	eferer	nces	171
List of Publications			185

List of Tables

2.1 The general transfer function, magnitude and phase of order $\alpha + \beta$ FLPF,
FHPF, FBPF and FBSF
3.1 Oscillation Parameters
3.2 All possible inverse filters from topology I
3.3 All possible inverse filters from topology II
3.4 All possible generalized FOIFs topologies
3.5 All possible inverse filters from configuration 1
3.6 All possible inverse filters from configuration 2
3.7 All possible inverse filters for configuration 4
4.1 General TF of the proposed prototype with different impedances and the
critical frequencies
4.2 TF of the two-port network-one impedance lter
4.3 General Filter Transfer functions using two and three impedances 58
4.4 TF of the two-port network-two impedance filter for topologies IV, V 59
4.5 General TF of the two-port network -two impedance filter for topologies
VI, VII
4.6 Filter TF of the two-port network -three impedance filter 62
4.7 Transmission matrix of different networks using Current Conveyor family. 63
4.9 Realization of topologies using different networks 64
4.10 Comparison between different simulations FLPF of order α
4.11 Comparison between different simulations FHPF of order α
5.1 The impedance combinations realized by topology I
5.2 The impedance combinations realized by topology II
5.3 The impedance combinations realized by topology III
5.4 The impedance combinations realized by topology IV
5.5 Comparison between several emulators and the proposed emulators 105
5.6 The realization of floating impedance using proposed emulator 109
5.7 The possible implementation of floating element using the proposed real-
izations
5.8 All possible realization using the first proposed grounded emulators 11
5.9 All possible realization of the second proposed emulator
5.10 All possible realization using the proposed floating emulators 114

List of Figures

	2.2	Circuit symbol of CCII family (a) CCII+, and (b) CCII- [2]	6
	2.3	Circuit symbol of ICCII family (a) ICCII+, and (b) ICCII- [6]	7
	2.6	Circuit symbol of different active blocks (a) DCC [11], (b) MDCC [11],	
		and (c) DCVC [12]	10
	2.7	Circuit symbol of TA \pm (a) TA+, and (b) TA- [9]	11
	2.8	Circuit symbol of (a) BOTA, and (b) DOTA [13]	12
	2.16	FO lowpass filter (a) circuit, and (b) the magnitude and phase response at	
		different values of α .	24
	2.20	The pinched hysteresis of (a) memristor in $I - V$ plane, (b) meminductor	
		in $\varphi - I$, and (c) memcapacitor in $q - v$ plane	29
	0.1		2.0
	3.1	Topology I (a) general structure, (b) network A, and (c) network B	36
_	3.2	Oscillation parameters for topology I network A oscillator (a) oscillation	25
		frequencies, and b phase difference.	37
	3.3	Topology I network B, (a) Oscillation frequency, and (b) phase surfaces	•
		versus $\alpha - \beta$ plane	39
	3.4	Topology 2, (a) general structure, (b) network A, and (c) network B	40
	3.5	Topology 2 network B (a) Oscillation frequency2, (b) phase surfaces	
		versus $\alpha - \beta$ plane	41
	3.6	Oscillation parameters for topology 2 network A oscillator (a) ω_0 , and (b)	
		φ versus $\alpha - \beta$ plane	41
	3.7	PSPICE simulation output waveforms for network A, (a) Topology I, (b)	
		Topology II.	42
	3.8	The experimental results of topology I network A	42
	3.11	Numerical simulation of IFHPF for different values of $\alpha = \beta$	44
	3.12	The FOIF proposed topologies a topology I, b topology II	45
	3.13	Spice simulation for IFHPF at $\omega = 2\pi * 1k$ when $\beta = 1$ and $\alpha = 0.8$ b	
		$\beta = \alpha = 1$	47
	3.17	a The realization of OTRA block using AD844, and b PSPICE simulation	
		for IFLPF at $f = 5kHz$ at $\alpha = 0.8$	51
	3.18	a Circuit connection b experimental and PSPICE simulation for IFLPF at	
		$f = 5kHz$ at $\alpha = 0.8$	52
	4.0		
_	4.2	Special topologies using one, two, three elements (a) Topology I, (b) Topology I, (c) Topology I, (d) Topology I, (d) Topology I, (e) Topology	
느		ogy II, (c) Topology III, (d) Topology IV, (e) Topology V, (f) Topology VI,	56
	4.2	(g) Topology VII, (h) Topology VIII, (i) Topology IX, and (j) Topology X.	56
_	4.3	Topology III case 1, (a) ω_m versus α , (b) ω_h versus α of network B and D,	66
	4 4	and (c) magnitude response for FHPF at $\alpha = 1.3$	OO
_	4.4	Topology IV case 4 (a) Magnitude response of networks A, C, and D at	
\vdash		$\alpha = 1.3$, the movement of network A poles in s-plane for (b) $1 < \alpha < 2.5$ and $R = 2R_{n1}$ and $R = 1K\Omega$, $C = 2X10^{-4}$, and (c) $\alpha = 1.3$ and $-10 < R/R_{n1} < 1$.	66
		$\Lambda = 2\Lambda_{01}$ and $\Lambda = 1\Lambda 22$, $C = 2\Lambda 10^{\circ}$, and $ C /U = 1.3$ and $-10 \leq K/K_{01} \leq 1.1$	υO

4.5 Change filter poles with β of case.1 topology X use CCII+ for netw	ork B
(a) $\alpha = 0.7$, (b) $\alpha = 1.3$, for network C (c) $\alpha = 0.7$, (d) $\alpha = 1.3$, netw	ork D
(e) $\alpha = 0.7$, and (f) $\alpha = 1.3$	68
4.6 Maximum frequency of topology X case.1 of networks (a) network	B, (b)
network C, and (c) network D	69
4.7 Topology X case 1 (FBPF) for $\alpha = 0.7$, $\beta = 1$ (a) Magnitude response	e, and
(b) phase response.	70
4.8 Topology X case 1 (a) ω_h , and (b) ω_m for networks B, C, and D, repeated	
versus $\alpha - \beta$ plane.	71
4.9 Topology X case 4 at $\alpha = 1.3$, $\beta = 0.7$ (a) Magnitude response, a	
Phase response.	73
4.11 FLPF of order α network implementation of (a) (2, B, III), (b) (2, C)	
(c) (4, B, IV), (d) experimental set-up, and (e) practical results at α	
4.12 The simulation FHPF of order $\alpha = 1.2$ using ground FOI where the	
band gain (a) = 1 (b) < 1, and (c) > 1	
4.13 FHPF order α (a) the implementation of (1, B, III), ands the circu	
nection, and (b) the simulation and experimental results at $\alpha = 1.2$.	•
4.14 FLPF of order $\alpha + \beta$ network implementation of (a) (4, B, X), and	
general prototype).	80
4.15 FLPF of order $\alpha + \beta$ (a) the simulation results at $\alpha 0.7$, $\beta = 1$, (b) the	
connection, and (c) experimental results of general prototype	81
4.16 The simulation and practical results for $(4, X)$ at $\alpha = 0.7$, $\beta = 1$ (a) ne	etwork
C, and (b) network B.	82
4.17 Network implementation of (1, X) (a) network B, (b) network	C, (c)
Circuit simulation at $(\alpha, \beta) = (0.7, 1)$ for networks B and C, and (d) the
cascaded FLPF and FBPF	83
	01
5.1 Numerical simulations of memductance $a = 90\mu\Omega$ and $k = 9mA^{-1}s$	
a) $\alpha = 0.7$, and (b) different orders at $f = 0.16Hz$	86
5.2 Numerical simulations of FO inverse memristance $a = 90\mu\Omega$ are	
$9mA^{-1}s^{-\alpha}$ at (a) $\alpha = 0.7$, and (b) different orders at $f = 8Hz$	87
5.3 a The FO meminductor for different β at $a = 80\mu$ H and $k = 5\mu$ HC	
and b the FO memcapacitor for different β when $a = 100\mu$ F and	
$400\mu FWb^{-1}s^{-\alpha}$	88
5.4 The proposed memristor emulator a voltage-controlled, and b co	arrent-
controlled.	89
5.5 The simulation results of decremental voltage-controlled memristo	r 90
5.6 The simulation results of incremental current-controlled memrist	or for
different frequencies at $\alpha = 0.8$	91
5.7 The Monte Carlo results for the hysteresis loop of the current-cont	rolled
memristor in the I-V plane at $\alpha = 0.8$.	
5.9 The proposed generalized inverse emulator	
5.10 The numerical results for the proposed generalized inverse emulator	
5.11 Numerical results of the proposed emulgator at 50Hz for different	_
resistors (b) capacitors	93
5.12 The PSPICE simulation for the proposed generalized inverse emula	awı 94