

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

# بسم الله الرحمن الرحيم





MONA MAGHRABY



شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو



شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم



MONA MAGHRABY



شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

# جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات



يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار



MONA MAGHRABY





## A PIPELINE ADC USING ENHANCED-LINEARITY RING-AMPLIFIER

Ву

### Ahmed Gharib Abdelraouf Ahmed Gadelkarim

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

**Electronics and Communications Engineering** 

# A PIPELINE ADC USING ENHANCED-LINEARITY RING-AMPLIFIER.

Ву

## Ahmed Gharib Abdelraouf Ahmed Gadelkarim

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

in

**Electronics and Communications Engineering** 

Under the Supervision of

### Prof. Ahmed Nader Mohieldin Prof. Mohamed Mostafa Aboudina

Professor

Associate Professor

Electronics and Communications Engineering Faculty of Engineering , Cairo University Electronics and Communications Engineering Faculty of Engineering, Cairo University

## A PIPELINE ADC USING ENHANCED-LINEARITY RING-AMPLIFIER

Ву

### Ahmed Gharib Abdelraouf Ahmed Gadelkarim

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

**Electronics and Communications Engineering** 

Approved by the Examining Committee:

Prof. Ahmed Nader Mohieldin, Thesis Main Advisor

Prof. Ahmed Hussien Khalil, Internal Examiner

Prof. Sameh Assem Ibrahim, External Examiner
Associate Professor

Faculty of Engineering, Ain Shams University

FACULTY OF ENGINEERING , CAIRO UNIVERSITY GIZA, EGYPT 2020 Engineer's Name: Ahmed Gharib Abdelraouf Ahmed Gadelkarim

Date of Birth: 30/08/1992 Nationality: Egyptian

E-mail: agharib.gadelkarim@gmail.com

Phone: 01004792922

Address: El-Mohawelat ST., El-Haram St., Giza, 12518

Registration Date: 01/03/2016Awarding Date: -/-/2020

Degree: Master of Science

**Department:** Electronics and Communications Engineering

**Supervisors:** 

Prof. Ahmed Nader Mohieldin Prof. Mohamed Mostafa Aboudina

**Examiners:** 

Prof. Ahmed Nader Mohieldin (Thesis Main Advisor)
Prof. Ahmed Hussien Khalil (Internal Examiner)
Prof. Sameh Assem Ibrahim (External Examiner)

Associate Professor

Faculty of Engineering, Ain Shams University

#### Title of Thesis:

#### A Pipeline ADC using Enhanced-Linearity Ring-Amplifier

#### **Key Words:**

Ring amplifier, Adaptive slew-rate, Linearity enhancement, ADC, Energy efficient.

#### **Summary:**

This thesis proposes a slew rate enhancement technique which solves the fundamental trade-off between speed and stability. The proposal is to use a rail-to-rail controlled feedforward path to be used in parallel with an original ring amplifier. This feedforward path boosts the linearity of the amplifier significantly without any stability degradation. The linearity improvement is achieved by enhancing the slew rate of the used amplifier while minimizing the overhead current consumption. Thus, using this feedforward path enhances the linearity for almost the same current consumption, hence reducing the overall system figure of merit (FoM). The core idea of the thesis has been verified using M-DAC architecture with unity closed loop gain. The proposal enhances the total harmonic distortion by 10dB while reducing the overall FoM by more than half compared to state-of-the-art techniques. Then, a 10-bit 1.5-bit/stage pipeline ADC has been implemented using this adaptive ring-amplifier. The full system has been implemented using TSMC 65nm CMOS technology and 0.9V supply voltage.

## Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Ahmed Gharib Abdelraouf Ahmed Gadelkarim Date:-/-/2020

Signature:

# Dedication

I would like to dedicate this work to my parents who are without them I would not be able to do anything.

## Acknowledgements

I would like to thank many people who supported and encouraged me to be able to finish this work with high quality. First of all, I would like to specifically thank my advisors Prof. Ahmed Nader, Prof. Mohamed Aboudina, and Prof. Faisal Hussien for their dedicated help and support. They also opened my mind to explore new enhancement techniques till we reached this final form of the thesis. Certainly, I can not forget the role of my great family as they motivated me the whole time to work harder and never to give up against all problems and challenges. My father Prof. Gharib Gadelkarim and Dr. Amany Almahdy did a lot of effort to maintain the suitable environment to be able to work. My brother Mohamed Gharib and his wife May Gaafer were beside me during touch times and give me their opinions to overcome the challenges. Also, I would like to thank my friends, especially, Shrouk Shafie who taught me how to make layout which was an essential step to publish our work. In addition, her continuous support during tough times was very helpful. Another friend I want to thank is Anas Mohamed Wanas who helped me a lot during writing this thesis. Finally, I thank God for all the outputs I have reached and hope that I can even work more on it and one day others will make good use of my work and build on it to make something much better.

# Table of Contents

| D:                | isclai           | mer           |                          |                                    | 1                      |  |  |  |  |  |
|-------------------|------------------|---------------|--------------------------|------------------------------------|------------------------|--|--|--|--|--|
| D                 | edica            | tion          |                          |                                    | ii                     |  |  |  |  |  |
| Acknowledgements  |                  |               |                          |                                    |                        |  |  |  |  |  |
| Table of Contents |                  |               |                          |                                    |                        |  |  |  |  |  |
| Li                | ${f st}$ of      | Table         | S                        |                                    | viii                   |  |  |  |  |  |
| Li                | $\mathbf{st}$ of | Figur         | es                       |                                    | ix                     |  |  |  |  |  |
| Li                | ${f st}$ of      | Symb          | ols and                  | Abbreviations                      | xii                    |  |  |  |  |  |
| Li                | ${f st}$ of      | Publi         | $\operatorname{cations}$ |                                    | xiv                    |  |  |  |  |  |
| $\mathbf{A}$      | bstra            | $\mathbf{ct}$ |                          |                                    | $\mathbf{x}\mathbf{v}$ |  |  |  |  |  |
| 1                 | INT              | TROD          | UCTION                   | 1                                  | xvi                    |  |  |  |  |  |
|                   | 1.1              | Techn         | ology Sca                | ling                               | 1                      |  |  |  |  |  |
|                   | 1.2              | Data          | Converter                | 'S                                 | 2                      |  |  |  |  |  |
|                   |                  | 1.2.1         | Definition               | on of Data Converters              | 2                      |  |  |  |  |  |
|                   |                  | 1.2.2         | Motivat                  | ion for Using Data Converters      | 2                      |  |  |  |  |  |
|                   | 1.3              | Data          | Converter                | rs Characterization                | 3                      |  |  |  |  |  |
|                   |                  | 1.3.1         | Static C                 | Characterization                   | 3                      |  |  |  |  |  |
|                   |                  |               | 1.3.1.1                  | Resolution                         | 3                      |  |  |  |  |  |
|                   |                  |               | 1.3.1.2                  | Gain Error and Offset              | 3                      |  |  |  |  |  |
|                   |                  |               | 1.3.1.3                  | Differential Non-Linearity (DNL)   | 4                      |  |  |  |  |  |
|                   |                  |               | 1.3.1.4                  | Integral Non-Linearity (INL)       | 4                      |  |  |  |  |  |
|                   |                  | 1.3.2         | Dynami                   | c Characterization                 | 5                      |  |  |  |  |  |
|                   |                  |               | 1.3.2.1                  | Signal to Noise Ratio (SNR)        | 5                      |  |  |  |  |  |
|                   |                  |               | 1.3.2.2                  | Spurious Free Dynamic Range (SFDR) | 5                      |  |  |  |  |  |
|                   |                  |               | 1.3.2.3                  | Total Harmonic Distortion (THD)    | 5                      |  |  |  |  |  |

|   |     |         | 1.3.2.4 $$ Signal to Noise and Distortion Ratio (SNDR) $$ | 6  |
|---|-----|---------|-----------------------------------------------------------|----|
|   |     |         | 1.3.2.5 Effective Number of Bits (ENOB)                   | 6  |
|   |     | 1.3.3   | ADC Figure of Merit (FoM)                                 | 6  |
|   | 1.4 | Thesis  | Organization                                              | 6  |
| 2 | AD  | C ARC   | CHITECTURES                                               | 7  |
|   | 2.1 | ADC I   | Parameters                                                | 7  |
|   | 2.2 | Flash . | ADCs                                                      | 8  |
|   | 2.3 | SAR A   | ADCs                                                      | 9  |
|   | 2.4 | Delta-S | Sigma ADCs                                                | 10 |
|   | 2.5 | Time I  | Interleaved ADCs                                          | 12 |
|   | 2.6 | Pipelir | ne ADCs                                                   | 13 |
|   |     | 2.6.1   | System Level Analysis                                     | 14 |
|   |     |         | 2.6.1.1 A 1.5-bit Stage Pipeline ADC                      | 15 |
|   |     |         | 2.6.1.2 The M-DAC Design                                  | 15 |
|   |     |         | 2.6.1.3 Noise Analysis                                    | 17 |
|   | 2.7 | Summ    | ary                                                       | 17 |
| 3 | RIN | NG AM   | <b>IPLIFIERS</b>                                          | 18 |
|   | 3.1 | Motiva  | ation for Using Ring Amplifiers                           | 19 |
|   | 3.2 | Ring A  | Amplifier Concepts                                        | 19 |
|   | 3.3 | Theory  | y of Operation                                            | 20 |
|   |     | 3.3.1   | Initial Ramping                                           | 20 |
|   |     | 3.3.2   | Stabilization                                             | 21 |
|   |     | 3.3.3   | steady state                                              | 23 |
|   | 3.4 | Practio | cal Implementations of Ring Amplifier                     | 23 |
|   |     | 3.4.1   | Floating Bias Ring Amplifier                              | 23 |
|   |     | 3.4.2   | Self-Biased Ring Amplifier                                | 24 |
|   |     | 3.4.3   | Ring Amplifier with High Threshold Devices                | 25 |
|   |     | 3.4.4   | Starved Inverters Ring Amplifier                          | 26 |
|   |     | 3.4.5   | Immune Dead-Zone Ring Amplifier                           | 28 |
|   |     |         | 3.4.5.1 Diode Connected Resistors                         | 28 |
|   |     |         | 3.4.5.2 Dead-Zone Regulation Loop                         | 28 |

|   | 3.5 | Ring A | Amplifier Key Advantages                    | 29 |
|---|-----|--------|---------------------------------------------|----|
|   |     | 3.5.1  | Rail-to-Rail Output Swing                   | 29 |
|   |     | 3.5.2  | Efficient Slew-Based Charging               | 30 |
|   |     | 3.5.3  | Performance Scaling with Process            | 30 |
|   |     | 3.5.4  | Summary                                     | 30 |
| 4 | AD  | APTI   | VE SLEW RATE RING AMPLIFIER                 | 31 |
|   | 4.1 | Speed  | /Stability Trade-off                        | 31 |
|   | 4.2 | Previo | ous Adaptive Slew Rate Techniques           | 31 |
|   |     | 4.2.1  | Fixed Duty Cycle                            | 31 |
|   |     | 4.2.2  | Dual Dead Zone                              | 32 |
|   |     | 4.2.3  | Passive Compensation                        | 33 |
|   | 4.3 | Propo  | osed Adaptive Slew Rate Feedforward Path    | 34 |
|   |     | 4.3.1  | Building Blocks                             | 35 |
|   |     |        | 4.3.1.1 Replica Stage                       | 35 |
|   |     |        | 4.3.1.2 Control Gates with Enable Generator | 35 |
|   |     |        | 4.3.1.3 Helpers                             | 36 |
|   |     | 4.3.2  | Design Considerations                       | 36 |
|   |     |        | 4.3.2.1 Replica Stage                       | 36 |
|   |     |        | 4.3.2.2 Helpers                             | 37 |
|   | 4.4 | Simula | ation Results                               | 37 |
|   |     | 4.4.1  | Enable Control                              | 37 |
|   |     | 4.4.2  | Settling Speed                              | 38 |
|   |     | 4.4.3  | Linearity                                   | 39 |
|   |     | 4.4.4  | Stability                                   | 40 |
|   |     | 4.4.5  | Power                                       | 41 |
|   |     | 4.4.6  | Mismatch                                    | 42 |
|   |     | 4.4.7  | Layout                                      | 43 |
|   |     | 4.4.8  | Results Summary                             | 44 |
| 5 | AD  | C IMF  | PLEMENTATION                                | 45 |
|   | 5.1 | Buildi | ing blocks                                  | 45 |
|   |     | 5.1.1  | Sampling Switches                           | 45 |

| Re | efere | nces   |                                 | 65 |
|----|-------|--------|---------------------------------|----|
| 6  | CO    | NCLU   | SION AND FUTURE WORK            | 63 |
|    |       | 5.2.6  | Top Level                       | 59 |
|    |       | 5.2.5  | Non-overlapping clock generator | 58 |
|    |       | 5.2.4  | First Stage and Redundant Bit   | 57 |
|    |       | 5.2.3  | Comparators                     | 55 |
|    |       | 5.2.2  | M-DAC                           | 52 |
|    |       |        | 5.2.1.2 Sampling Switch         | 52 |
|    |       |        | 5.2.1.1 Reference Switch        | 51 |
|    |       | 5.2.1  | Switches                        | 51 |
|    | 5.2   | Simula | ation Results                   | 51 |
|    |       | 5.1.4  | Digital Correction              | 49 |
|    |       | 5.1.3  | Residue Amplifier               | 47 |
|    |       | 5.1.2  | Comparators                     | 47 |
|    |       |        | 5.1.1.3 Circuit Implementation  | 47 |
|    |       |        | 5.1.1.2 Basic Bootstrap Concept | 46 |
|    |       |        | 5.1.1.1 Non-idealities          | 45 |

# List of Tables

| 4.1 | Comparison |  |  | • |  |  |  |  |  |  |  |  |  |  |  |  |  | 44 |
|-----|------------|--|--|---|--|--|--|--|--|--|--|--|--|--|--|--|--|----|
| 5.1 | Comparison |  |  |   |  |  |  |  |  |  |  |  |  |  |  |  |  | 62 |