

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

EVALUATION OF PRODUCING SOME MEDICINAL AND AROMATIC HERBS UNDER AQUAPONIC CONDITION

By

SABAH ABD EL -KARIM MAHMOUD SALAMA

B.Sc. Agric. Sc. (Organic Agric. in English Program), Fac. Agric, Ain Shams Univ., 2011

A Thesis Submitted in Partial Fulfillment Of The Requirements for the Degree of

MASTER OF SCIENCE
in
Agricultural Sciences
(Advanced Agricultural Systems for Arid Lands)

Department of Arid lands Faculty of Agriculture Ain Shams University

2021

Approval Sheet

EVALUATION OF PRODUCING SOME MEDICINAL AND AROMATIC HERBS

UNDER AQUAPONIC CONDITION

 $\mathbf{B}\mathbf{y}$

SABAH ABD EL-KARIM MAHMOUD SALAMA

B.Sc. Agric. Sc. (Organic Agric. in English Program), Fac. Agric, Ain Shams Univ., 2011

This thesis for M.Sc. degree has been approved by:			
Dr. Ahmad Atef Sadek Radwan			
Head Researches Emeritus of Medicinal and Aromatic Plants			
Horticulture Research Institute, Agricultural Research Center			
Dr. Ayman Farid Abou –Hadid			
Prof. Emeritus of Vegetable Crops, Faculty of Agriculture, Ain			
Shams University			
Dr. Mohamed Zaky El-Shinawy			
Prof of Vegetables Crops, Faculty of Agriculture, Ain Sham			
University			
Dr. Awaad Mohamed Abd-Allah Kandeel			
Prof. Emeritus of Medicinal and Aromatic Plants, Faculty o			
Agriculture, Ain Shams University			
Date of Examination: 16 /1 /2021			

EVALUATION OF PRODUCING SOME MEDICINAL AND AROMATIC HERBS UNDER AQUAPONIC CONDITION

SABAH ABD EL-KARIM MAHMOUD SALAMA

B.Sc. Agric. Sc. (Organic Agric. in English Program), Fac. Agric, Ain Shams Univ., 2011

Under the supervision of:

Dr. Awaad Mohamed Kandeel

Prof. Emeritus of Medicinal and Aromatic Plants, Horticulture Department, Faculty of Agriculture, Ain Shams University (principal supervisor)

Dr. Mohamed Zaky El-Shinawy

Prof. of Vegetables Crops, Horticulture Department, Faculty of Agriculture, Ain Shams University

Dr. Mohamed Abul-Soud

Head Researches of Soilless Culture, Central Laboratory for Agricultural Climate

ABSTRACT

Sabah Abd El-Karim Mahmoud Salama. "Evaluation of Producing some Medicinal and Aromatic Herbs Under Aquaponic Condition". Unpublished M.Sc. Thesis, Department of Horticulture, Faculty of Agriculture, Ain Shams University, 2021

Conventional agricultural systems facing problems due to declining resources resulting from overpopulation. Hence alternative agricultural techniques involving aquaponic system (includes aquatic species e.g. Tilapia) and hydroponics (includes crop plant e.g. herbs, flowers, and vegetable) that have a great potential to provide high yield (fish and plant) per unit area with high water use efficiency and avoid soil problems. The current experiment was conducted at the Arid Lands Agricultural studies and Research Institute (ALARI), Ain Shams University, Egypt, during the summer seasons of 2017 and 2018 respectively. The study aimed to investigate the efficiency of aquaponic system compared to substrate culture (chemical nutrient solution (control)) as a nutritional source combined with french basil and mint in two different plant densities (6 and 8 plants / m²) performed in complete randomized blocks design. The vegetative growth, yield quality, the nutrient contents (N, P and K), total chlorophyll, the oil (%) and the essential oil components of basil and mint have been estimated periodically as well as the measurements of fish tilapia growth and yield.

The major oil component of mint (*Mentha longifolia*) using nutrient solution with 6 plants /m² was pulegone 65.82 %, 1.8 cineole 15.41 % and menthone 4.19 % and with 8 plants /m² was pulegone 61.80 %, 1.8 cineole 17.23 % and menthone 4.69 % .Whereas using aquaponic water with 6 plants /m² was pulegone 60.90 % , 1.8 cineole 18.10 % and menthone 4.55 % and with 8 plants /m² was Pulegone 58.54 % , 1.8 cineole 17.02 %, Menthone 9.07 %.

Whereas basil (*Ocimum basilicum var. minimum*.) The major oil component using nutrient solution with 6 plants /m² was linalool 42.81 %, Eugenol 19.59 % and Methyl chavicol 6.50 % using nutrient solution and with 8 plants /m² was Linalool 41.90 %, Eugenol 20.38 %, Methyl chavicol 6.33 % .Whereas using aquaponic water with 6 plants /m² was Linalool 37.74 % , Eugenol was 19.81 % and Methyl chavicol was 1.63 % and with 8 plants /m² was Linalool 37.42 % ,Eugenol 18.66 %, Methyl chavicol 7.99 % .

Exposed results indicated that both basil and mint were successfully grown in aquaponic and act as natural bio filter for fish rearing water hence overcome the problem of environmental effluent. Plant density 8 plants / m^2 treatment of both Basil and Mint had a higher capacity for enhancing the quality of fish rearing water in comparison

with plant density 6 plants / m² resulted in increased the fish yield (the final and gain tilapia yield). The use of the chemical nutrient solution provided higher plant height, fresh and dry yields of basil and mint than the aquaponic solution, as well as N, P, K and oil content (%) of basil and mint plants in both plant density (6 and 8 plants / m²) and in both seasons. The highest plant height, N, P, K and oil content results were reported for the treatment of chemical nutrient solution + plant density 6 plants / m² while chemical nutrient solution + plant density 8 plants / m² had the highest fresh and dry yield of basil and mint. The chlorophyll content and number of branches, however, did not differ between Aquaponic systems and hydroponic systems. The need for increasing the food production to overcome the problem of over population , motivate to apply aquaponic technique for french basil and mint production provided food production (fish and vegetables) as well as the medicinal plants at the same time protecting the environment by avoiding the use of chemical fertilizers.

Keywords: Aquaponic system, French Basil, Mint, Hydroponics, Nile Tilapia, Plant Density.

ACKNOWLEDGMENT

Praise and thanks are due to **ALLAH**, the most merciful for leading me to the right direction.

The author wishes to express his deepest gratitude to **Dr. Awaad Mohamed Kandeel.** professor Emeritus of Medicinal and aromatic plants, Horticulture Department, Faculty of Agriculture, Ain Shams University (principal supervisor) for valuable guidance and provision of facilities

I am especially indebted to **Dr. Mohamed Zaky El-Shinawy.** Professor of Vegetables Crops, Horticulture Department, Faculty of Agriculture, Ain Shams University for his kind treatment and encouragement for completion this work.

My heartfelt thanks to **Dr. Mohamed Abd El Baki Amer.**Professor of Fish physiology, Animal Production Department,
Faculty of Agriculture, Ain Shams University.

I gratefully thank **Dr. Mohamed Abul-Soud.** Professor of soilless Central Laboratory for Agricultural Climate for his encouragement and support during the whole work.

My thanks have to be extended to the **Arid Lands Agricultural studies and Research Institute (ALARI)** - Ain Shams University for the facilities offered which enabled the author to carry out this work.

I wish to express my deep appreciation, thankful and respect to **Prof. Dr. Mahmoud Sakr**. The chief of Academy of Research and Technology(ASRT) and my kind sister ever **Dr. Merit Rostom**, the Director of Scientists for Next Generation Program(SNG) and the general supervisor of Scientific grants for her usual support and help.

A private thanks to **my parents**, **my husband**, and my **sister** for their support, advice and sincere guidance to accomplish this work.

A great thankful to **Dr. Mohammed Hassan Mohammed.** Researcher at Central Laboratory for Agricultural Climate for his advices and support during the whole work

CONTENTS

	Page
LIST OF TABLES	IV
LIST OF FIGURES	VI
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	3
2.1 Aquaponic Definition	3
2.3 Aquaponic system Components	5
2.3.1 Aquaculture System	6
2.3.1.2 Fish type in Aquaponic System	7
2.3.1.3 Water Quality Parameters of Tilapia	8
2.3.1.3.1 Water Temperature	8
2.3.1.3.2 Acceptable pH Ranges	10
2.3.1.3.3 Dissolved Oxygen	11
2.3.1.3.4 Feeding Rate and Type for Tilapia	12
2.3.1.3.5 Nitrogen Compound	13
2.3.1.3.6 Density of Tilapia Stocked	14
2.3.2 Soilless Cultures	15
2.3.2.1 The Use of Substrate Culture in Aquaponic	18
2.3.2.1.1 Chemical and Physical Properties for Perlite:	23
2.3.3 Aquaponic Crops	23
2.3.3.1 Medicinal Plants	23
3. MATERIALS AND METHODS	31
3.1. Aquaponic system material	31
3.1.1 Fish material	31
3.1.2 Fish rearing tank	33
3.1.3 Mechanical Filtration unit of Tilapia	33
3.1.4 Fish aerating equipment	33
3.2 Substrate culture system	34
3.2.1 Plant Materials	35
3.3 The investigated treatments	35
3.4 Measurements	36
3.4.1 Measurements of aqua tilapia fish	36

	Page
3.4.1.1 Recorded data of tilapia fish rearing water	37
3.4.1.2 Recorded data of tilapia growth	37
3.4.2 Measurements of basil and mint	37
3.4.2.1 Vegetative growth measurements	38
3.4.2.2 Chemical analysis of French basil and mint	39
3.5 Statistical design and analysis	39
4. RESULTS	42
4.1 RESULTS OF BASIL	42
4.1.1. Plant height	42
4.1.2. Number of branches	42
4.1.3. Average total chlorophyll content	43
4.1.4. Fresh & dry weight	44
4.1.5. Average oil content	45
4.1.6. Fresh and dry Yield	45
4.1.7. Nitrogen content	46
4.1.8. Phosphorus content	47
4.1.9. Potassium content	48
4.2. Results of Mint	48
4.2.1. Plant height	48
4.2.1. Number of branches	49
4.2.3. Average of total chlorophyll content	50
4.2.4. Fresh and dry weight	50
4.2.5. Average of oil content	51
4.2.6. Fresh and dry yield	52
4.2.7. Nitrogen content	53
4.2.8. Phosphorus content	54
4.2.9. Potassium content	54
4.3. Results of Nile Tilapia	55
4.3.1. Water Parameters	55
4.3.2. Tilapia growth performance	57
4.4. RESULTS of Gas Chromatograph	58
4.4.1.Essential oil components of mint with plant density 6	58

	Page
plants /m² using nutrient solution	
4.4.2. Essential oil components of mint with plant density 8	60
plants /m² using nutrient solution	
4.4.3. Essential oil components of mint with plant density 6	61
plants /m² using Fish water	
4.4.4. Essential oil components of mint with plant density 8	62
plants /m² using Fish water.	
4.4.5. Essential oil components of basil with plant density 6	64
plants /m² using nutrient solution	
4.4.6. Essential oil Components of basil with plant density 8	66
plants /m² using nutrient solution	
4.4.7. Essential oil components of basil with plant density 6	67
plants /m² using fish water	
4.4.8. Essential oil Components of basil with plant density 8	69
plants /m² using fish water.	
5. DISCUSSION	71
6. SUMMARY	75
7. REFERENCES	77
8. ARABIC SUMMARY	

LIST OF TABLES

Table No.		Page
1.	Analytical descriptions of tilapia feeder under the study	32
2.	The chemical composition of nutrient solutions.	35
3.	Daily water temperature in tank rearing tilapia (°C)	40-41
4.	Effect of nutrient source and plant density on Plant height of basil	42-43
5.	Effect of nutrient source and plant density on Number of branches of basil	43
6.	Effect of nutrient source and plant density on total chlorophyll content of basil	44
7.	Effect of nutrient source and plant density on fresh weight of basil	44
8.	Effect of nutrient source and plant density on Dry weight of basil	44
9.	Effect of nutrient source and plant density on oil content of basil	45
10.	Effect of nutrient source and plant density on Fresh yield of basil	46
11.	Effect of nutrient source and plant density on Dry Yield of basil	46
12.	Effect of nutrient source and plant density on Nitrogen content of basil	47
13.	Effect of nutrient source and plant density on Phosphorus content of basil	47
14.	Effect of nutrient source and plant density on Potassium content of basil	48
15.	Effect of nutrient source and plant density on Plant height of Mint	49
16.	Effect of nutrient source and plant density on number of branches of mint	49

of mint	50
18. Effect of nutrient source and plant density on Fresh weight of mint	51
19. Effect of nutrient source and plant density on dry weight of mint	51
20. Effect of nutrient source and plant density on oil content of mint	52
21. Effect of nutrient source and plant density on Fresh yield of mint	52
22. Effect of nutrient source and plant density on dry yield of mint	53
23. Effect of nutrient source and plant density on nitrogen content of mint	53
24. Effect of nutrient source and plant density on phosphorus content of mint	54
25. Effect of nutrient source and plant density on Potassium content of mint	55
26. Average fish rearing water parameters under different plant densities of basil.	56
27. Average fish rearing water parameters under different plant densities of Mint.	57
28. The parameters of tilapia growth performance in aquaponic system with basil and mint	58
volatile oil and their percentage 30. The obtained components of Mint as affected by nutrient solution under plant density 6 plants /m².	59
volatile oil and their percentage as 31. The obtained components of Mint affected by nutrient solution under plant density 8 plants /m².	60
volatile oil and their percentage as 32. The obtained components of Mint affected by Fish water under plant density 6 plants /m².	62
33. The obtained components of Mint volatile oil and their percentage as affected by Fish water under plant density 8 plants /m².	63
34. The obtained components of Basil volatile oil and their percentage	65

as affected by nutrient solution under plant density 6 plants /m².

35.	The obtained components of Basil volatile oil and their percentage	66
	as affected by nutrient solution under plant density 8 plants /m².	
36.	The obtained components of Basil volatile oil and their percentage	68
	as affected by Fish water under plant density 6 plants /m².	
37.	The obtained components of Basil volatile oil and their percentage	70
	as affected by Fish water under plant density 8 plants /m ² .	