

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

# بسم الله الرحمن الرحيم





HANAA ALY



شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله



شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم



HANAA ALY



شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

# جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات



يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار



HANAA ALY





## VOLUME INTEGRAL EQUATIONS FORMULATION FOR PLASMONIC NANO DEVICES IN LAYERED MEDIA

By

### Esraa Mohamed Abdelkhaleq Mahdy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Engineering Physics

## VOLUME INTEGRAL EQUATIONS FORMULATION FOR PLASMONIC NANO DEVICES IN LAYERED MEDIA

# By **Esraa Mohamed Abdelkhaleq Mahdy**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in **Engineering Physics** 

Under the Supervision of

Prof. Dr. Alaa K. Abdelmageed

Prof. Dr. Ezzeldin A. Soliman

Professor
Department of Engineering Math. and
Physics,
Faculty of Engineering, Cairo University

Professor
Department of Physics,
School of Sciences and Engineering,
The American University in Cairo

### VOLUME INTEGRAL EQUATIONS FORMULATION FOR PLASMONIC NANO DEVICES IN LAYERED MEDIA

# By Esraa Mohamed Abdelkhaleq Mahdy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Engineering Physics

Approved by the Examining Committee

Prof. Dr. Alaa K. Abdelmageed, Thesis Main Advisor

Prof. Dr. Ezzeldin A. Soliman, Advisor

- School of Sciences and Engineering, The American University in Cairo

Prof. Dr. Tamer M. Abuelfadl, Internal Examiner

Prof. Dr. Amr Shaarawi, External Examiner

- School of Sciences and Engineering, The American University in Cairo

**Engineer's Name:** Esraa Mohamed Abdelkhaleq Mahdy

Date of Birth:15/11/1992Nationality:Egyptian

E-mail: emahdy@cu.edu.eg
Phone: 01003153893

**Address:** Engineering Physics Dept., 12613

Cairo University

**Registration Date:** 01/03/2015 **Awarding Date:** ..../2020 **Degree:** Master of Science

**Department:** Engineering Mathematics and Physics

**Supervisors:** 

Prof. Dr. Alaa K. Abdelmageed Prof. Dr. Ezzeldin A. Soliman

(School of Sciences and Engineering, The American

University in Cairo)

**Examiners:** 

Prof. Dr. Amr Shaarawi (External examiner) (School of Sciences and Engineering, The American

University in Cairo)

Prof. Dr. Tamer M. Abuelfadl (Internal examiner)
Porf. Dr. Alaa K. Abdelmageed (Thesis main advisor)

Porf. Dr. Ezzeldin A. Soliman (Advisor)

(School of Sciences and Engineering, The American

University in Cairo)

#### **Title of Thesis:**

Volume Integral Equations Formulation for Plasmonic Nano Devices in Layered Media

#### **Key Words:**

Plasmonics; Volume Integral Equations; Discrete Complex Images; Method of

Moments; Nanoantennas

#### **Summary:**

This thesis presents a volume integral equation formulation for plasmonic nano devices in planar multilayered media. This integral equation is solved numerically using the Method of Moments (MoM). The proposed formulation is used to study different nano structures immersed inside layered media. The structures include nano-rods in layered medium excited by plane wave, nano patch antenna in layered medium excited by plane wave, nano patch antenna in layered medium excited by transmission line, and two coupled nano patch antennas located at both side of a substrate and excited with transmission lines. The obtained current distributions and S-parameters are compared with those obtained using CST Microwave Studio. A very good agreement is concluded.



### **Disclaimer**

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

| Name: Esraa Mohameo | d Abdelkhaleq Mahdy | Date:// |
|---------------------|---------------------|---------|
| Signature:          |                     |         |

# **Dedication**

To my family and friends

### Acknowledgments

Foremost, I would like to thank Allah, the almighty, for giving me the strength, patience and courage to do this work. This thesis would not have been accomplished without the guidance and support of my supervisors, colleagues, friends and family that I would like to express my gratitude to them.

With my greatest pleasure, I would like to thank my advisors Prof. Dr. Alaa K. Abdelmageed and Prof. Dr. Ezzeldin A. Soliman.

I am deeply grateful to Prof. Alaa Abdelmageed for the endless support and continuous motivation. I am thankful to him for introducing me to this research project. I am extremely inspired by his dynamism and methodology of problem solving. Before working with Prof. Alaa, he was my professor for two important graduate courses in the field of electromagnetics and he inspired me to work in this interesting area of research. He helped to study and understand electromagnetic from the basics up to the advanced levels.

I would like to express my sincere appreciation to Prof. Ezzeldin Soliman for his efforts, constant guidance, and invaluable suggestions and ideas. I am grateful to him for giving me this opportunity of joining his research group at AUC and working under his supervision. I am very thankful to him for his persistence to tackle research challenges faced throughout the work. I learnt a lot from his experience and enormous knowledge.

I would also like thank my examination committee members: Prof. Dr. Amr Shaarawi, Professor at School of Sciences and Engineering in the American University in Cairo, and Prof. Dr. Tamer M. Abuelfadl, Professor at Electronic and Electrical Communications Engineering in Cairo University, for their time and efforts in revising my thesis. They provided me with constructive feedback and helpful comments.

Many thanks to all my colleagues in the Engineering Physics Department, Cairo University. I am grateful to Marina, Sarah, Mostafa, Ahmed and Hussein for helping me in the graduated courses. I also would like to thank Hassan, Yasser, Haitham, Mohamed Alaa, and Mohamed Ashraf for making the teaching load, during preparing the thesis, enjoyable.

I am grateful to my friends Sara, Thuraya, Rania, Nada, Yomna, Hajar, and Shrouk for their continuous motivation and emotional support. They made this journey wonderful. Thanks to the playful Biso, he was the best companion while writing the thesis.

I am deeply thankful and indebted to my parents for supporting and encouraging me. Their endless care, support and prayers are always surrounding me. Thanks to my little sister, Haidy, for always providing me with positive energy. Thanks to my parents-in-law for caring and supporting me. I am thankful to all my family for always believing in me, I would not reach this point without them.

Last but not least, I am extremely grateful to Abdelrahman, my loving husband, without his love, support and understanding, this work would not come into existence. I am so thankful that I have him with me, pushing and encouraging me, when I was ready to give up.

Esraa Mahdy February, 2020

## **Table of Contents**

| DIS  | SCLAIMER                                                                                                                                                                                                      | I      |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| DE   | DICATION                                                                                                                                                                                                      | II     |
| AC   | KNOWLEDGMENTS                                                                                                                                                                                                 | III    |
| TAl  | BLE OF CONTENTS                                                                                                                                                                                               | V      |
| LIS  | T OF TABLES                                                                                                                                                                                                   | VII    |
| LIS  | T OF FIGURES                                                                                                                                                                                                  | VIII   |
|      | T OF SYMBOLS AND ABBREVIATIONS                                                                                                                                                                                |        |
| ABS  | STRACT                                                                                                                                                                                                        | XV     |
|      | APTER 1: INTRODUCTION                                                                                                                                                                                         |        |
| 1.1. |                                                                                                                                                                                                               |        |
| 1.2. |                                                                                                                                                                                                               |        |
| 1.3. |                                                                                                                                                                                                               |        |
| 1.4. |                                                                                                                                                                                                               |        |
| 1.5. |                                                                                                                                                                                                               |        |
| CH.  | APTER 2 : SPECTRAL DOMAIN GREEN'S FUNCTIONS                                                                                                                                                                   | 7      |
| 2.1. | Introduction                                                                                                                                                                                                  | 7      |
| 2.2. | ELECTROMAGNETIC FIELDS IN THE SPECTRAL DOMAIN                                                                                                                                                                 | 7      |
| 2.3. | TE-Z AND TM-Z SYSTEMS DECOMPOSITION                                                                                                                                                                           | 10     |
|      | 2.3.1. TE-z system                                                                                                                                                                                            | 10     |
|      | 2.3.2. TM-z system                                                                                                                                                                                            | 11     |
| 2.4. | BOUNDARY CONDITIONS AT THE LAYERS' INTERFACES                                                                                                                                                                 | 11     |
|      | 2.4.1. Boundary Conditions for TE-z System                                                                                                                                                                    | 12     |
|      | 2.4.2. Boundary Conditions for TM-z System                                                                                                                                                                    | 12     |
| 2.5. | EXTRACTING TE/TM CURRENTS FROM ORIGINAL CURRENTS                                                                                                                                                              | 13     |
| 2.6. | SYSTEM SOLUTIONS                                                                                                                                                                                              | 13     |
|      | 2.6.1. TE System Solution                                                                                                                                                                                     | 13     |
|      | 2.6.2. TM System Solution                                                                                                                                                                                     | 16     |
| 2.7. | COMBINATIONS OF TE-Z AND TM-Z ELECTROMAGNETIC FIELDS                                                                                                                                                          | 18     |
| 2.8. | SPECTRAL DOMAIN GREEN'S FUNCTION FOR LAYERED MEDIA OF PRAGE                                                                                                                                                   | CTICAL |
| IMP  | ORTANCE 20                                                                                                                                                                                                    |        |
|      | 2.8.1. HED on Top of Finite Substrate                                                                                                                                                                         | 20     |
|      | 2.8.1.1. Spectral Green's Functions in the Half-Space above the Source                                                                                                                                        |        |
|      | 2.8.1.2. Spectral Green's Functions in the Half-Space below the Source                                                                                                                                        |        |
|      | 2.8.2. Two HEDs at both Sides of Finite Substrate                                                                                                                                                             |        |
|      | <ul><li>2.8.2.1. Spectral Green's Functions due to Source 'a' in the Medium containing Source 'a'</li><li>2.8.2.2. Spectral Green's Functions due to Source 'b' in the Medium Containing Source 'a'</li></ul> |        |
|      | 2.8.2.3. Spectral Green's Functions due to Source 'a' in the Medium containing Source 'b'                                                                                                                     |        |
|      | 2.8.2.4. Spectral Green's Functions due to Source 'b' in the Medium containing Source 'b'                                                                                                                     |        |

| CH                     | APTER 3 : SPATIAL DOMAIN GREEN'S FUNCTIONS                                               | 27     |
|------------------------|------------------------------------------------------------------------------------------|--------|
| 3.1.                   | Introduction                                                                             | 27     |
| 3.2.                   |                                                                                          |        |
|                        | 3.2.1. Quasi-Dynamic Images Extraction                                                   | 28     |
|                        | 3.2.2. Discrete Complex Images                                                           |        |
| 3.3.                   |                                                                                          |        |
| IMP                    | ORTANCE 31                                                                               |        |
|                        | 3.3.1. Source on Top of a Finite Substrate                                               | 31     |
|                        | 3.3.1.1. Spatial Green's Functions in the Half-Space above the Source                    |        |
|                        | 3.3.1.2. Spatial Green's Functions in the Half-Space below the Source                    |        |
|                        | 3.3.2. Two Sources at both Sides of Finite Substrate                                     |        |
|                        | 3.3.2.1. Spatial Green's Functions due to Source 'a' at the Medium containing Source 'a' |        |
|                        | 3.3.2.2. Spatial Green's Functions due to Source 'b' at the Medium containing Source 'a' |        |
|                        | 3.3.2.3. Spatial Green's Functions due to Source 'a' at the Medium containing Source 'b' |        |
|                        | -                                                                                        |        |
|                        | APTER 4: INTEGRAL EQUATIONS FORMULATION AND                                              |        |
| ME                     | THOD OF MOMENTS                                                                          | 51     |
| 4.1.                   | INTEGRAL EQUATIONS FORMULATION                                                           | 51     |
| 4.2.                   | METHOD OF MOMENTS (MOM)                                                                  | 52     |
|                        | 4.2.1. Plasmonic Nano Rod in Free Space and Illuminated by Plane Wave                    |        |
|                        | 4.2.2. Plasmonic Nano Rod above Finite Substrate and Illuminated by Plane Way            |        |
|                        | 4.2.3. Rectangular Patch on Top of Finite Substrate and Fed with Transmission L          |        |
|                        | 4.2.4. Two Patches at both Sides of a Finite Substrate                                   |        |
|                        |                                                                                          |        |
| CH                     | APTER 5 : RESULTS AND DISCUSSION                                                         | 67     |
| 5.1.                   | PLASMONIC NANO ROD IN FREE SPACE ILLUMINATED BY PLANE WAVE                               | 67     |
| 5.2.                   | PLASMONIC NANO ROD ABOVE FINITE SUBSTRATE ILLUMINATED BY PLANE                           |        |
|                        | T LASMONIC IVANO ROD ABOVE I INTE GOBSTRATE ILLUMINATED BT I LANE                        |        |
|                        |                                                                                          |        |
| 5.3.                   |                                                                                          |        |
| PLA                    | NE WAVE                                                                                  | 71     |
| 5.4.                   | RECTANGULAR PATCH ON TOP OF FINITE SUBSTRATE FED WITH TRANSM                             | ISSION |
| Lini                   | B                                                                                        | 75     |
| 5.5                    | ELECTROMAGNETICALLY COUPLED PATCHES AT BOTH SIDES OF A                                   | FINITE |
|                        | STRATE                                                                                   |        |
|                        | BAND-STOP FILTER                                                                         |        |
|                        |                                                                                          |        |
| CH                     | APTER 6 : CONCLUSIONS                                                                    | 84     |
| 6.1.                   | SUMMARY OF THE WORK                                                                      | 84     |
| 6.2.                   | FUTURE WORK                                                                              | 85     |
|                        |                                                                                          |        |
| $\mathbf{K}\mathbf{E}$ | FERENCES                                                                                 | 87     |

## **List of Tables**

| Table 3.1: Amplitudes and locations of the complex images for the spectral functions $\hat{R}_{1,1}$ and $\hat{R}_{3,1} - \hat{R}_{3q,1}$                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 3.2: Amplitudes and locations of the complex images for the spectral functions $\hat{R}_1^{ab} - \hat{R}_{1q}^{ab}$ and $\hat{R}_3^{ab} - \hat{R}_{3q}^{ab}$ 42                                                                                   |
| Table 5.1: Dimensions of the gold nano rod placed in free-space                                                                                                                                                                                         |
| Table 5.2: Dimensions of the gold nano patch placed on top of SiO <sub>2</sub> /Au substrate72                                                                                                                                                          |
| Table 5.3: Optimum dimensions of the patch nantenna and the feeding transmission line                                                                                                                                                                   |
| Table 5.4: Dimensions of the two electromagnetically coupled patches and the feeding transmission lines                                                                                                                                                 |
| Table 5.5: Number of mesh cells and computation time required by CST for different substrate thicknesses to simulate two electromagnetically coupled patches fed with transmission lines located at both sides of a SiO <sub>2</sub> finite substrate81 |
| Table 5.6: Geometrical dimensions of the band-stop filter                                                                                                                                                                                               |

# **List of Figures**

| Figure 1.1: Trapping of light inside a photovoltaic solar cell by metallic nanoparticles [20]                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 1.2: Nano rods with cross section of a Split Ring Resonator [2]3                                                                                                                                                                           |
| Figure 1.3: Nanoantennas with resonance at the visible and infrared range for SERS and SEIRS, respectively [3]                                                                                                                                    |
| Figure 2.1: A horizontal electric dipole (HED) impressed inside a multilayered media. 7                                                                                                                                                           |
| Figure 2.2: The inward and outward recursive method for finding the reflection and expansion coefficients of the TE system                                                                                                                        |
| Figure 2.3: The inward and outward recursive method for finding the reflection and expansion coefficients of the TM system                                                                                                                        |
| Figure 2.4: HED is located on top of a finite substrate                                                                                                                                                                                           |
| Figure 2.5: Two HEDs located at the two sides of a finite substrate                                                                                                                                                                               |
| Figure 3.1: (a) The spectral function $\hat{R}_{3,1}$ versus $k_{\rho}$ , (b) $\hat{R}_{3,1}$ after extracting the quasi-dynamic terms $\hat{R}_{3q,1}$                                                                                           |
| Figure 3.2: (a) The spectral function $\hat{R}_1^{ab}$ versus $k_{\rho}$ , (b) $\hat{R}_1^{ab}$ after extracting the quasi-dynamic terms $\hat{R}_{1q}^{ab}$                                                                                      |
| Figure 3.3: (a) The spectral function $\hat{R}_3^{ab}$ versus $k_{\rho}$ , (b) $\hat{R}_3^{ab}$ after extracting the quasi-dynamic terms $\hat{R}_{3q}^{ab}$                                                                                      |
| Figure 4.1: Plasmonic gold rod in free-space                                                                                                                                                                                                      |
| Figure 4.2: Rectangular meshing of the structure and the basis functions: (a) Basis functions along <i>x</i> -direction, (b) Basis functions along <i>y</i> -direction, and (c) an <i>x</i> -directed basis function showed in 3-dimensional form |
| Figure 4.3: Gold rod above a finite substrate backed by sufficiently thick ground58                                                                                                                                                               |
| Figure 4.4: Rectangular patch nano-antenna fed with transmission line on top of a SiO <sub>2</sub> substrate: (a) cross-sectional view and (b) three-dimensional view                                                                             |
| Figure 4.5: Basis functions (rooftops) along the patch and the transmission line, x-directed basis functions in blue and y-directed ones in green, as well as the source function (half rooftop), in red, at the edge of the transmission line    |