

Evaluation of Natural Killer Cells in HCV Patients undergoing Hemodialysis

Chesis

Submitted for Partial Fulfillment of Master Degree in Clinical Pathology

*By*Mariam Talaat Shaker Sedhom

High diploma degree in clinical pathology

Supervised by

Professor / Yasser Ahmed Zeitoun

Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

Professor/ Rania Hamdy El-Kabarity

Professor of Clinical Pathology
Faculty of Medicine - Ain Shams University

Dr. / Tamer Wahid Elsaid

Assistant Professor of Internal Medicine And Nephrology Faculty of Medicine - Ain Shams University

Dr. / Dina Aly Mohamed Aly Ragab

Assistant Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2020

Thanks are given to ATTAM the source of all knowledge, by whose abundant aid this work has come to fruition.

It has been a great honor to proceed this work under the supervision of **Professor/Yasser Ahmed Zeitoun**, Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University. I am greatly indebted to him for suggesting, planning the subject and supervising the whole work. To him, words of praise are not sufficient and I am really greatly indebted to him.

I would like also to express my sincere gratitude for **Professor**/ Rania Hamdy El-Kabarity, Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her helpful guidance, valuable advice and generous help in this work. To her I shall be forever grateful.

I would like to express my deep obligation to **Doctor**/ **Jamer** Wahid Elsaid, Asisstant Professor of Internal Medicine and nephrology , Faculty of Medicine, Ain Shams University, for his useful assistance and enlightening supervision.

I would like to express my profound appreciatin to **Doctor**/ **Dina Aly Mohamed Aly Ragab**, Asisstant Professor of clinical Pathology, Faculty of Medicine, Ain Shams University, I will never forget her unlimited help, continuous support, kind encouragement and wise guidance.

LIST OF CONTENTS

Title Pag	e No
List of Abbreviations	i
List of Tables	iv
List of Figures.	.V
Introduction	
Aim of the work	
Review of Literature	
Hepatitis C virus	
A. Structure of HCV:	
B. Hepatitis C virus life cycle:	.6
C. Immune Response to HCV:	
D. Epidemiology of HCV Infection:	
E. Clinical picture of Hepatitis C:	
F. Modes of Transmission:1	
G. Laboratory Diagnosis of Hepatitis C:	
Natural Killer Cells	
A- Development of NK:	
B. NK cell History:	
C.NK Cell Receptors:	
D. NK cell subsets:	
E. Effector functions of NK Cells:	
F. NK Cell Immunity Against HCV:	41
Subjects and Methods4	١7
Results	53
Discussion6	3 5
Summary and Conclusion	/3
Recommendations	7 5
References	76
العدول المنافض	_

Evaluation of Natural Killer Cells in HCV Patients undergoing Hemodialysis

Yasser Ahmed Zeitoun1, Rania HamdyEl-Kabarity1, Tamer Wahid Elsaid2, Dina Aly Mohamed Aly Ragab1 and Mariam Talaat Shaker Sedhom1

- 1 Clinical Pathology Department, Faculty of Medicine Ain Shams University, Cairo, Egypt.
- 2 Internal Medicine and Nephrology, Faculty of Medicine Ain Shams University, Cairo, Egypt.

Abstract:

Background: Hepatitis C virus (HCV) is a hepatotropic virus and one of the major causes of liver disease and a potential cause of substantial morbidity and mortality worldwide. Patients on hemodialysis are at high risk for HCV, with frequency of infection several times higher than that in non-uremic patients. Natural killer (NK) cells are best appreciated for innate defense against viral infections and in tumor cell surveillance. **Objective:** To study the percentage of peripheral blood natural killer cells among chronic hepatitis C patients undergoing hemodialysis compared to chronic HCV patients with normal kidney functionsby flowcytometry immunophenotyping. **Methodology:** Frequency of CD3- CD56+ cells was assessed in two distinct groups. Group I: 35 chronic HCV patients with end stage renal disease and undergoing hemodialysis, group II: 35 age and sex matched chronic HCV patients with no kidney disease. Results: No significant difference was observed between HCV hemodialysis patients with ESRD and HCV patients with normal kidney function regarding the frequency of both NK cells (CD3-CD56+) and NKT cells (CD3+CD56+). However, group I had significantly higher percentage of CD3+ cells than group II. Conclusion: no difference was found in this study between HCV patients on hemodialysis and HCV with normal kidney function regarding NK cell frequency. However, assessment of NK cell function in future studies might reveal differences.

Key words: HCV, NK

LIST OF ABBREVIATIONS

Abb. Full Term

ADCC ---: antibody-dependent cellular cytotoxicity

ALT -----: alanine aminotransferase

AST ----: aspartate aminotransferase

BAT3 ----: B associated transcript 3

BID----: BH3-interacting domain

BUN----: blood urea nitrogen

CD ----: cluster of differentiation

cDNA ----: complementary DNA copy

CHILPs -: common helper innate lymphoid progenitors

CILPs---: common innate lymphoid progenitors

CLDN ---: claudin

CLPs----: common lymphoid progenitors

DC ----: dendritic cells

EDTA----: ethylenediamine tetra-acetic acid

EIA----: enzyme immunoassay

ESRD ----: end-stage renal disease

FasL----: Fas ligand

Fs ----:: forward scatter

GAGs ---: glycos-aminoglycans

GM-CSF: granulocyte/monocyte colony-stimulating factor

GzmA----: granzyme A

GzmB ----: granzyme B

HCV ----: Hepatitis C virus

HD----: hemodialysis

HLA----: human leukocyte antigen

ICAM-1 -: inter-cellular adhesion molecule- 1

IFN ----: interferon

IL ----: interleukin

ILC----: innate lymphoid cell

ILCP----: innate lymphoid cell precursors

ITAM ----: immunoreceptor tyrosine-based activating motifs

ITIM ----: immunoreceptor tyrosine-based inhibitory motifs

KIRs ----: killer cell immunoglobulin-like receptors

LDL-R --: LDL-receptor

LFA ----: Lymphocyte function associated antigen

LIRs----: leukocyte Ig like receptors

LTi -----: lymphoid tissue-inducer

LTiPs ----: lymphoid tissue inducer progenitors

mDCs ----: myeloid DCs

MHC----: major histocompatibility complex

MICA/B -: major histocompatibility complex class I-related chain A/B

NADPH -: Nicotinamide Adenine Dinucleotide Phosphate

NCR----: natural cytotoxicity receptor

NK ----: natural killer

NKP----: NK cell precursors

NS proteins: non-structural proteins

NS -----: non-significant

PBMCs --: peripheral blood mononuclear cells

PCR -----: polymerase chain reaction

pDCs----: plasmacytoid DCs

PFN ----: perforin

RIBA----: recombinant immunoblot assay

RNA ----: ribonucleic acid

S ----: Significant

SD ----: standard deviation

SPSS ----: statistical package for social science

SR-B I ---: scavenger receptor class B type I

Ss ----: side scatter

TAP -----: transporter associated with antigen

TGF-B 1-: transforming growth factor- B 1

TNF ----: tumor necrosis factor

TRAIL---: tumor necrosis factor-related apoptosis-inducing ligand

TRAIL-R: TNF-related apoptosis-inducing ligand-receptor

UTR ----: untranslated regions

VCAM---: vascular adhesion molecules

LIST OF TABLES

Table No. Title	Page No.
Table (1): Demographic data of patie	ents53
Table (2):Comparison between gregarding different laborate	roup I and group II tory parameters54
Table (3): Comparison between g patients regarding perce CD56+ cells and CD3+CD5	
Table (4): Correlation between perc CD56+, CD3+ CD56+ cell parameters	ý

LIST OF FIGURES

Figure	No.	Title		Page No
Figure (1): Structure of I	Hepatitis C virus		5
Figure (2): The structure	of the viral genom	e	6
Figure (3): HCV receptor	ors for cell entry	•••••	7
Figure (4): Life cycle of	f hepatitis C virus	•••••	9
Figure (5): Developmer	nt of ILCs	•••••	26
Figure (6): The 2013 cla	assification of ILCs		28
Figure (7): Activating a	nd inhibitory recep	tors of NK cells	32
Figure (8): Functional h	eterogeneity of NK	Cellse	35
Figure (9	•	nism of NK activa on of cell apoptosis		
Figure (nism of antibody	<u>-</u>	
Figure (1	1): Overview of	of the flowcytomete	er	49
Figure (1	2): Gating stra	tegy for NK cells		51
Figure (_	son between both		
Figure (-	son between both		
Figure (-	son between both		
Figure (son between both	0 1	0
Figure (-	son between both		
Figure (son between both		
Figure (son between both		
Figure (2		son between both		

Figure (21): Comparison between both studied groups regarding CD3+ cells	60
Figure (22): Comparison between both studied groups regarding CD3-CD56+ cells	60
Figure (23): Comparison between both studied groups regarding CD3+CD56+ cells	61
Figure (24): Correlation between urea and percentage of CD3+ cells	62
Figure (25): Correlation between creatinine and percentage of CD3+ cells.	63
Figure (26): Correlation between calcium and percentage of CD3+ CD56+ cells.	63
Figure (27): Correlation between haemoglobin and percentage of CD3+ CD56+cells.	64

Introduction

Hepatitis C is an infectious disease caused by the hepatitis C virus (HCV) that primarily affects the liver (*Lavanchy*, *2011*). HCV spreads primarily by blood-to-blood contact associated with intravenous drug use, poorly sterilized medical equipment, needle stick injuries in healthcare and transfusions. (*Maheshwari and Thuluvath*, *2009*).

Chronic kidney disease is a progressive loss in renal function over a period of months or years. All individuals with a glomerular filtration rate of less than 15/ml/min/1.73 m2 for 3 months are classified as having end-stage renal disease (ESRD) (Levin et al., 2008).

In Egypt, the prevalence of dialysis patients is presumed to be increasing and the main causes of ESRD in Egypt, other than diabetic nephropathy, include hypertensive kidney disease, chronic glomerulonephritis, unknown etiology, chronicpyelonephritis, schistosomal obstructive uropathy, and schistosomal nephropathy (*Afifi et al.*, 2004).

Patients on hemodialysis are at high risk for HCV, with frequency of infection several times higher than that in nonuremic patients. The spread of HCV in hemodialysis units is declining, but the prevalence of HCV in hemodialysis patients remains high (*Selcuk et al.*, 2006).

The knowledge about the immunological aspects of the chronic hepatitis C especially in ESRD patients on regular hemodialysis needs further study (*Poordad et al.*, 2004).

The immunophenotyping of peripheral blood has been employed in studies focusing on the pathogenesis of chronic hepatitis C. The study of natural killer (NK) cells, a type of cytotoxic lymphocyte critical to the innate immune system, in hepatitis C pathogenesis has been the focus of several studies (*Larrubia et al.*,2007).

AIM OF THE WORK

The aim of this work is to study the percentage of peripheral blood natural killer cells among chronic hepatitis C patients undergoing hemodialysis compared to chronic HCV patients with normal kidney functions by flowcytometry immunophenotyping.

HEPATITIS C VIRUS

Hepatitis C virus is a hepatotropic virus and one of the major causes of liver disease and a potential cause of substantial morbidity and mortality worldwide. Moreover, it is estimated that >184 million people have been infected with HCV (on the basis of positive anti-HCV antibody results), representing >2.8% of the world population (*Thrift et al.*, 2017).


Chronic HCV is one of the major causes of advanced liver disease, including cirrhosis, hepatocellular carcinoma, and related complications. In the United States, approximately one-third of cirrhosis cases and one-fourth of hepatocellular carcinoma cases are due to chronic HCV infection (*Armstrong et al.*, 2000).

A. Structure of HCV:

Hepatitis C virus is a member of the Hepacivirus genus (of the family Flaviviridae). Other members of this family include viruses that cause yellow fever, dengue, Japanese encephalitis and tickborne encephalitis (*Rogo et al.*, 2011).

HCV is an enveloped, small (55-65nm in size), positive sense, single stranded ribonucleic acid (RNA) virus. The HCV particle consists of a core of genetic material "RNA", surrounded by an icosahedral protective shell of protein, and further encapsed in a lipid envelope of cellular origin. Two viral envelope

glycoproteins, E1 and E2, are embedded in the lipid envelope (*Budkowska*, 2017) (Fig.1).

Figure (1): Structure of Hepatitis C virus (https://microbewiki.Kenyon.edu/index.php/modern_treatments_for_hepatitis_c_virus)

The genome of HCV is an open reading frame of 9600 nucleotide bases that has at its 5' and 3' ends untranslated regions (UTR) that are not translated into proteins but are important to translation and replication of the viral RNA. The 5' UTR has a ribosome binding site that starts the translation of a 3011 amino acid containing protein that is later cut by cellular and viral proteases into 10 active structural and non-structural smaller proteins (*Rogo et al.*, 2011) (Fig. 2).