

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

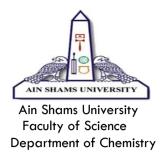
شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات



يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

كليه العلوم - قسم الكيمياء

Synthesis, Characterization and Application of Polymeric Dispersants for Inkjet inks Industry

Thesis Submitted by

Mohamed Ahmed Abdelaziz Mohamed

B.Sc. (Chemistry) 2010

M.Sc. (Chemistry) 2017

For the requirement of Ph.D. Degree of Science in Chemistry

To

Paculty of Science

Ain Shams University

Faculty of Science Department of Chemistry

كليه العلوم - قسم الكيمياء

Synthesis, Characterization and Application of Polymeric **Dispersants for Inkjet inks Industry**

Thesis Submitted for Degree of Ph.D.

Chemistry

Presented by **Mohamed Ahmed Abdelaziz Mohamed**

M.Sc. Chemistry (2017)

Supervised by

Dr. Mohamed Ahmed Mohamed Mekewi

Prof. of Polymer Chemistry, Department of Chemistry, Faculty of Science, Ain Shams University, Egypt.

Dr. Michel Fahmy Abdel-Messih Ibrahim

Asso. Prof of Physical chemistry, Department of Chemistry, Faculty of Science, Ainshams University, Egypt

Dr. Mahmoud Abd El-Rahman Ibrahim Ibrahim

Research and Development Manager, DEGLA Chemicals Co., Cairo, Egypt

Faculty of Science Department of Chemistry

كليه العلوم - قسم الكيمياء

Synthesis, Characterization and Application of Polymeric Dispersants for Inkjet inks Industry

By

Mohamed Ahmed Abdelaziz Mohamed

Thesis Advisors	Approved
Dr. Mohamed Ahmed Mohamed Mekewi	
Prof. of Polymer Chemistry, Department of Chemistry, Face	ulty of Science,
Ain Shams University, Egypt.	
Dr. Michel Fahmy Abdel-Messih Ibrahim	•••••
Asso.Prof of Physical chemistry, Department of Chemistry,	Faculty of Science,
Ainshams University, Egypt	
Dr. Mahmoud Abd El-Rahman Ibrahim Ibrahi	m
Research and Development Manager, DEGLA Chemicals Co	o., Cairo, Egypt

Head of Chemistry Department Prof. Dr. Ayman Ayoub Abdel-Shafi

Ain Shams University Faculty of Science Department of Chemistry

كليه العلوم - قسم الكيمياء

ACKNOWLEDGMENT

ACKNOWLEDGMENT

First and foremost, thanks be to the almighty (**ALLAH**) for his limitless help and guidance and peace be upon his prophet.

I would like to express my deep respect, sincere and appreciation to Prof. **Dr. Mohamed Ahmed Mekewi**, for his sincere supervision, for his continuous advice, guidance, respective suggestion, support which he offered me through progress and finishing this work.

I am also grateful to **Dr. Michel Fahmy Abdel-Messih** for his Supervision, his valuable assistance, his kindness, encouragement and guidance during this work.

I really appreciate the efforts of **Dr. Mahmoud Abd El-Rahman Ibrahim** for the supervision, valuable assistance and guidance during this work.

My deep thanks to **Dr. Ahmed Abo-Elwafa** the owner of **Degla Chemicals Company** for his support, continuous help.

My special gratefulness to my parents, my sister and wife Dr.Ola Gamal for the encouragement, support, and patience to fulfill my study.

"I DEDICATE THIS WORK TO THEM & TO MY SON YAHYA"

Finally, I would like to thank member of the research team, Dr.Ahmed Sayed for creating an enjoyable working environment.

Mohamed Ahmed Abdelaziz

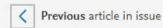
Published Paper

Progress in Organic Coatings

Volume 148, November 2020, 105875

Vivid application of polyurethane as dispersants for solvent based inkjet ink

Mohamed A. Abdelaziz a R., Mahmoud A. Ibrahim a, Michel F. Abdel-Messih b, Mohammed A. Mekewi b


Show more V

https://doi.org/10.1016/j.porgcoat.2020.105875

Get rights and content

Abstract

The present article explores the usage of functionalized urethane of robust affinity to pigment through the reaction of polyurethane adduct with different types of polyether in order to improve the pigment dispersion stability, color and wetting properties. The raw materials and prepared dispersants were characterized by FTIR, GPC, Non-volatile content. The properties and dispersing ability of the dispersants were also investigated by measuring ink viscosity, Rheology, surface tension and particle size. The prepared polymeric dispersants were employed as dispersing agents for solvent-based inkjet ink application. The adhesion and color properties of prepared ink also were studied. All dispersants possessed high gloss comparing to blank after storage stability and low particle size and surface tension except PUD 5, 6, all dispersants showed no negative affect on adhesion of ink on printed PVC film and possessed excellent dispersing ability and rheological properties indicated by low ink viscosity for most commonly used cyan pigment C.I. 15:4.

Next article in issue

Keywords

Inkjet; Printing inks; Polymeric dispersants; Dispersion; Polyurethane

ABSTRACT

ABSTRACT

The present research work covenants with the preparation, characterization and validation of environment friendly polymeric dispersants by means of urethane linkage and functional groups that of affinity to dominant pigments by reaction of polyurethane adduct with different types of polyether.

The polyurethane adduct were prepared either from petrochemical based or green based. The raw materials and prepared dispersants were characterized physicochemically and structurally (FT-IR, GPC, mechanical and optical properties).

The prepared polymeric dispersants were employed as dispersing agents for solvent-based inkjet ink application.

The devised dispersants exhibited respectable optical and mechanical properties and possessing excellent dispersing ability for prominently employed cyan pigment C.I. 15:4 and red pigment C.I.146

Keywords: Inkjet; Printing inks; Polymeric dispersants; Dispersion; Polyurethane; castor oil.

CONTENTS

Content	Page
LIST OF FIGURES	I
LIST OF TABLES	VI
LIST OF SCHEMES	VII
LIST OF ABBREVIATIONS	VIII
SUMMARY	XII
CHAPTER (1)	
GENERAL INTRODUCTION	
1. Inkjet Printing Technology	1
1.1. History of Inkjet Printing	2
1.2. Types of Inkjet Printing Technology	4
1.2.1. Continuous Ink Jet (CIJ)	4
1.2.2. Drop on Demand (DOD)	5
1.2.2.1. Thermal or Bubble Jet Technology	5
1.2.2.2. Piezoelectric Technology	7
1.3. Classification of Inkjet Inks	8
1.4. Inkjet Inks Properties	9
1.5. Applications of Inkjet Printing	10
1.6. The Physics of Inkjet Printing	11
1.6.1 Drop Formation	11

1.7. Composition of Inkjet Ink	13
1.7.1. Pigment	13
1.7.2. Resins (Binder)	16
1.7.3. Solvents	17
1.7.4. Quality Printing Upgrading Additives	17
1.8. Dispersing Agent Additive	18
References	19
Chapter (2)	
Synthesis and Characterization of Polyurethane Dispersants For So Based Inkjet Ink	lvent
2.1 Introduction	25
2.1.1 Role of Surfactants	25
2.1.2. Powder Wetting	26
2.1.3. Classification of Dispersing Agents	29
2.1.3.1. Surfactant Like	29
2.1.3.2. Polymeric Surfactant	31
2.1.4. Dispersant Polymeric Chains (Polymeric Tail) Solubility Parameter Concept For Selecting The Right Polymer Tail For an Ink Solvent System	32
2.1.5. Dispersant Head (Anchor Group)	33
2.1.6. Stabilization Mechanisms	33
2.1.7. Chemistry of Polyurethane	35
2.1.8. Advantages of Using Polyurethane	36
2.1.9. Components of Polyurethane	37
2.1.9.1. Diisocyanate	39

2.1.9.2 Polyols	40
2.2. Experimental	42
2.2.1. Chemicals	42
2.2.2. Characterization Techniques	43
2.2.2.1. FT-IR Spectroscopic Analysis	43
2.2.2. Molecular Weights Determination	43
2.2.2.3. Non-Volatile Content	45
2.2.2.4. Prepared Ink Particle Size Distribution	45
2.2.2.5. Apparent Viscosity of Ink	46
2.2.2.6. Liquid Ink Stability Test	46
2.2.3. Printed Film Characterization	47
2.2.3.1. Effect of Dispersant on Adhesion of Ink	47
2.2.3.2. Effect of Dispersant on Ink Gloss	48
2.2.4. Synthesis of The Dispersants (PuD)	50
2.3. Results and Discussion	51
2.3.1. Characterization Of The Raw Materials, Prepared	
Dispersants	51
2.3.1.1. FTIR Analysis	51
2.3.1.2. Molecular Weights Determination	74
2.3.1.3. Non-Volatile Content	75
2.3.2. Characterization of Prepared Ink	75
2.3.2.1. Prepared Ink Particle Size Distribution	75
2.3.2.2. Apparent Viscosity	79
2.3.3. Printed Film Characterization	82
2.3.3.1. Effect of Dispersant on Adhesion of Ink	82

2.3.3.2. Effect of dispersant on ink gloss	83
References	87
CHAPTER (3)	
Green Polyurethane Dispersant	
3.1. Introduction	93
3.1.1. Green Chemistry	93
3.1.2. Twelve Principles of Green Chemistry	93
3.1.3. Polymer From Renewable Resources	95
3.1.4. Chemistry of Vegetable Oils	96
3.1.5. Castor Oil	98
3.1.6. Vegetable Oil Polyols	98
3.1.7. Polyurethane From Vegetable Oil	100
3.2. Preparation of Castor Oil Based Polymeric Dispersants	102
3.3 Results And Discussion	104
3.3.1. Characterization of The Raw Materials, Prepared Dispersants	104
3.3.1.1. FTIR Analysis of Raw Materials	104
3.3.1.2. Molecular Weights Measurements	120
3.3.1.3. Non-Volatile Content	121
3.3.2. Characterization of Prepared Ink	122
3.3.2.1. Particle Size Distribution	126
3.3.2.2. Apparent Viscosity	126
3.3.3. Printed Film Characterization	129
3.3.3.1. Effect of Dispersant on Adhesion of Ink	129