

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

MONITORING AND BIOREMEDIATION OF HEXAVALENT CHROMIUM IN INDUSTRIAL EFFLUENTS

By

AHMED MOHAMED SAAD ABO-ELAZM

B.Sc. Agric. Sci. (Biotechnology Div.), Fac. Agric., Cairo Univ., 2015

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Agricultural Sciences (Microbiology)

Department of Microbiology Faculty of Agriculture Cairo University EGYPT

2020

MONITORING AND BIOREMEDIATION OF HEXAVALENT CHROMIUM IN INDUSTRIAL EFFLUENTS

By

AHMED MOHAMED SAAD ABO-ELAZM

B.Sc. Agric. Sci. (Biotechnology Div.), Fac. Agric., Cairo Univ., 2015

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Agricultural Sciences (Microbiology)

Department of Microbiology Faculty of Agriculture Cairo University EGYPT

2020

Format Reviewer

Vice Dean of Graduate studies

APPROVAL SHEET

MONITORING AND BIOREMEDIATION OF HEXAVALENT CHROMIUM IN INDUSTRIAL EFFLUENTS

M.Sc. Thesis
In
Agric. Sci. (Agricultural Microbiology)

By

AHMED MOHAMED SAAD ABO-ELAZM

B.Sc. Agric. Sci. (Biotechnology Div.), Fac. Agric., Cairo Univ., 2015

APPROVAL COMMITTEE

Dr. WAFAA MOHAMED ABD-ELRAHIMProfessor of Environmental Microbiology, Agricultural and Biological Research
Division, National Research Center (NRC), Egypt.
Dr. MERIT BEDAIR MAHMOUD
Assistant Researcher Professor of Biochemsetriy, Acdamy of scientific research and technology, Egypt.
Dr. HASSAN MOAWAD ABD ELAAL
$\label{eq:Researcher} \textbf{Researcher Professor of Environmental Microbiology, Agricultural and Biological Division, National Research Center (NRC), Egypt.}$
Dr. MOHAMMED ZAKERIA SEDIK
Professor of Microbiology, Fac. Agric., Cairo University, Egypt. Date: / 2020

SUPERVISION SHEET

MONITORING AND BIOREMEDIATION OF HEXAVALENT CHROMIUM IN INDUSTRIAL EFFLUENTS

M.Sc. Thesis
In
Agricultural Sci. (Agricultural Microbiology)

By

AHMED MOHAMED SAAD ABO-ELAZM

B.Sc. Agric. Sci. (Biotechnology Div.), Fac. Agric., Cairo Univ., 2015

SUPERVISION COMMITTEE

Dr. MOHAMMED ZAKERIA SEDIK

Professor of Microbiology, Fac. Agric., Cairo University, Egypt.

Dr. ALI TALAT SABBOR

Professor of Botany, Fac. Agric., Cairo University, Egypt.

Dr. HASSAN MOAWAD ABD ELAAL

Researcher Professor of Environmental Microbiology, Agricultural and Biological Research Division, National Research Centre (NRC), Egypt.

ACKNOWLEDGEMENT

I would like to express my sincere thanks and appreciation to **Dr. Hassan Moawad Abd ElAal,** Professor of Environmental Microbiology, Agricultural and Biological Research Division, National Research Centre (NRC) and **Dr. Mohammed Zakaria Sedik,** Professor of Microbiology, Fac. Agric., Cairo University for their great guidance and generous helping through the course of study, suggesting the topics of this thesis, supervision of the work as well as unlimited encouragement, valuable advices and stimulating.

My gratitude and deeply thanks to **Dr. Sahar Zaki,** Professor of Environmental Biotechnology, City of Scientific Research and Technological Application, sincere help guidance and stimulating criticism throughout the work in the thesis.

My gratitude and deeply thanks to **Dr. Wafaa Mohammed Abd El Rahim,** Professor of Environmental Microbiology, Agricultural and Biological Research Division, sincere help guidance and stimulating criticism throughout the work in the thesis.

Deep thanks to **Dr. Ali Talat Sabbor**, Professor of Anatomy, Fac. Agric., Cairo University for support, supervision and stimulating criticism throughout the work in the thesis.

Deep thanks to Academy of Scientific Research and Technology, for financial support, and educational training support.

My deep appreciation to the staff members of the Agric. Microbiology Dept. Fac. Agric., Cairo University and the authorities of the National Research Center for their generous support and help.

Special deep appreciation is given to my family and my friends for their help and encouragement.

Name of candidate: Ahmed Mohamed Saad Abo-Elazm Degree: M.Sc.

Title of Thesis: Monitoring and Bioremediation of Hexavalent Chromium in

Industrial Effluents

Supervision: Dr. Mohammed Zakeria Sedik, Dr. Hassan Moawad Abd Elaal

Dr. Ali Talat Sabbor

Department: Agricultural Microbiology **Approval:** / / 2020

ABSTRACT

The hexavalent chromium salts are widely used in many industries worldwide including leather tanning industry. The residues of these salts are discharged into the environment causing serious health hazardous to human, animals and plants. The chemical remediation of the Cr VI residues is costly and adds more pollutants to the environment. Therefore, the bioremediation of toxic hexavalent chromium residues is the aim of this study. For this purpose, the soil and wastewater samples from the heavily contaminated sites near tanneries were used for the isolation of Cr VI resistant bacteria. A total of 33 bacterial isolates was obtained from samples grown on LB medium amended with 50 mgL⁻¹ potassium di chromate (Cr VI). These isolates were screened for their growth in the medium amended with Cr VI concentrations ranging between 100 and 200 mgL⁻¹. Seven isolates showed tolerance to the highest concentration. These isolates were subjected to analysis of 16S rDNA genes followed by RFLP of the PCR product. The most promising isolate (No.3) that withstood the highest Cr VI concentration was further subjected to 16S rDNA gene nucleotide sequence. This isolate turned to be *Microbacterim* spp. with 98% similarity to the standard strain in the gene bank. The sequence was deposited in NCBI data bank under accession number mk878392. The efficiency of this indigenous strain of bacteria in removal of Cr VI from aquas solution showed that it was capable to remove 30% of Cr VI within first 20 hours then exponential increase took place after additional 20 hours. The total removal of Cr VI reached 97.2% after 96 hours of incubation. The immobilization of the strain on either alginate or chitosan accelerated the removal of Cr VI that reached 90% removal in 18 hours. This strain seems very promising as potential bioremediation agent for hexavalent chromium residues.

Keywords: Hexavalent chromium, *Microbacterium* spp., Bioremediation, immobilization.