

بسم الله الرحمن الرحيم


-Call 1600-2

COEFOR COEGORIO

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

CORRECT CORRECTOR

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

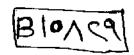
-Caro-

COEFERS CARGORNOR

بعض الوثائق

الأصلية تالفة

COLEGO COLEGORIO


بالرسالة صفحات

لم ترد بالأصل

COEFECT CARGOSTON

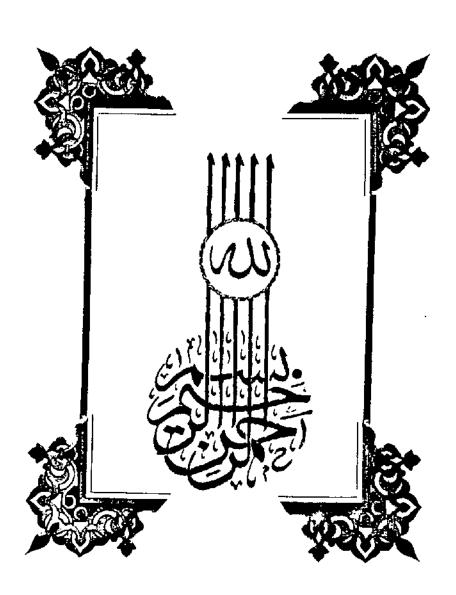
Minia University Faculty of Engineering& Technology

AN INVESTIGATION INTO

THE MECHANICAL PROPERTIES OF METALLIC POWDER COMPACTS

A Thesis

Submitted to the Faculty of Engineering& Technology Minia University, Egypt, for the partial fulfillment of requirements of the M. Sc. Degree in Mechanical Engineering (Production & Design Section)


рy

GAMAL ATTIA ABD ELGABER

B. Sc. Mechanical Engineering, Minia University, 1981

Supervision Committee

Professor Dr. F. F. Abdel- Aziz; Dr. M. N. El- Sheikh; and Dr. M. Abdel- Rahaman Faculty of Engineering& Technology, Minia University Minia; EGYPT

TO MY DEAR PARENTS, WIFE, BROTHERS AND SISTERS

Name

: Gamal Attia Abdel Gaber

Date of Birth : April 30 th; 1957

Qualifications

: B. Sc. (Mechanical Engineering), Minia University, Egypt, grade: Very Good, May, 1981.

- basic M. Sc. Courses, passed 1989/90 session, Minia University, Egypt.

position

: Now: Senior Engineer, Ministry of Public Works and Water Resources, Upper Egypt Section, Minia Region.

ACKNOWLEDGEMENTS

The author would like to thank Dr. Mohieldeen Abdel-Rahman, Faculty of Engineering& Technology, Minia University, for suggestion of the point of research, useful help, and hand-by-hand cooperation during supervision of this work. Sincere and great thanks are due to Dr. Mohammed El-Sheikh, Faculty of Engineering& Technology, Minia University, for his valuable assistance, helpful discussions, and continuous help in design encouragements. His construction of the experimental set-up facilitated the greatest part of this Thanks are also due to Professor Dr. this work. Farouk Farweez Abdel-Aziz, Vice Dean. Faculty Engineering& Technology, Minia University, care and encouragement. The Support Engineer Moustafa Mahmoud Yousef, Secretary of the Ministry of Public Works and Water Resources, Minia Region, will ever be appreciated. Without such support, this work will never be possible. The assistance of Mr. Rabie Wardany, Material Testing and Metal Forming Laboratory is also appreciated.

CONTENTS

	page
ACKNOWLEDGEMENTS	
CONTENTS	
SUMMARY	
NOTATIONS	
LISTS OF FIGURES AND TABLES	
CHAPTER ONE: INTRODUCTION	
I. 1. Introduction to Powder Metallurgy	1
I. 2. Mechanical Properties of PM Compacts:	
Workability Concept	2
I. 3. Workability Testing	3
I. 4. Workability/Fracture Criteria: An Overview	5
I, 5. Scope of This Work	7
CHAPTER TWO: DEFORMATION CHARACTERIZATION OF PM COMPACTS	
II. 1. Forging of PM Compacts	11
II. 1. 1. Forging Process	11
II. 1. 2. Stress & Strain States	12
II. 2. Difference Between Deformation in Pore Free	
and Porous Materials	12
II. 3. Theories for Deformation Characterization	
of PM Compacts	13
II.3.1. Kuhn & Downey Theory	13
II.3.2. Hwang & Kobayashi Theory	15
II. 4. A Hint on Workability Representation	16
II. 5. A Fracture Index For Metallic Powder Compacts	17
II. 6. Theoretical Validity of the Two Theories when	
Applied to the Working Hypothesis	19
CHAPTER THREE: EXPERIMENTAL WORK	
III. 1. Materials	25
III. 2. Equipment and Instrumentation	25
<pre>III. 3. Experimental Set-up</pre>	26

<pre>III. 3. 1. Compaction Set-up</pre>	26			
III. 3. 2. Heating Furnace	27			
III. 4. Lubrication	27			
III. 5. Measurements	27			
III. 6. The Experimental Program	28			
III. 6. 1. Cold Compaction Experiments	28			
III. 6. 2. Hot Compaction Experiments	28			
III. 6. 3. Testing of Compacts	30			
<pre>III. 6. 4. Upsetting of Compacts</pre>	30			
III. 6. 5. Testing of Upset Compacts	30			
CHAPTER FOUR : RESULTS & DISCUSSIONS				
<pre>IV. 1. Load/displacement Curves, Densification &</pre>				
Hardness	35			
IV. 1. 1. Cold Compaction Curves	35			
IV. 1. 2. Hot Compaction Curves	37			
IV. 2. Compaction Pressure Calculation and Comparison				
With the Experimental Results	38			
IV. 3. Free Upsetting of PM Compacts	40			
IV. 4. Fracture Mechanism & Fracture Modes in				
Upsetting of PM Compacts	41			
IV. 5. Application of the Working Hypothesis to the				
Experimental Results	43			
CONCLUSIONS AND RECOMMENATIONS TO FURTHER WORK				
REFERENCES				

AN INVESTIGATION INTO THE MECHANICAL PROPERTIES OF METALLIC POWDER COMPACTS

SUMMARY OF THE THESIS

In this work, an investigation of mechanical properties of powder metallurgy (PM) compacts was carried out. As it is well known, deformation and fracture of PM compacts in forming are quite different than these for solid parts. This is due to the presence of pores in the PM compacts, which gives relative density (compact density/theoretical density) less than 100%. The effect of relative density on the behaviour of PM compacts in upsetting was studied.

theories characterizing PM compact behaviour during deformation were reviewed : the first developed by Kuhn and Downey and the second by Hwang and kobayashi (1990). characterize the deformation of PM compacts, a simple workability index (β_n) is proposed in this study considering the effect of both apparent effective stress of powder material hydrostatic (mean) stress components of the powder material proposed index is the same as the stress workability index (β) proposed by Vujovic and Shabaik (1986): more negative value of the index means the addition of a hydrostatic compressive stress to the stress state which leads to a delay fracture; while more positive value of the index means the addition of a hydrostatic

tensile stress to the stress state which leads to speed fracture. When the two theories were applied to the working hypothesis, the Kuhn and Downey theory failed to verify that the effective stress of PM compact having 100% relative density to be the same as that for solid material at the ideal condition (μ = 0, and β = -1). So, It was suggested that the use of Whang and Kobayashi theory would give more realistic results.

An experimental program was planned and an experimental set up was designed and constructed to carry out the experiments. Compaction in both cold and hot working regimes was carried out to produce PM compacts from Aluminum and Copper powders. Properties of the compacts were measured. Effect of the compaction condition on compact properties was also checked. Then free upsetting of the compacts was preformed between two flat dies and height reduction to fracture were determined.

Hwang and Kobayashi (1990) theory was applied to the experimentally obtained results and constants were calculated. Then workability index (β_p) values were predicted. The results showed a very good agreement with the hypothetical principle and the effect of relative density could be detected with the aid of this parameter. A recommendation of the use of this index for characterizing compsite materials was made.

NOTATIONS

C,n	material constants	βр	workability index
Dr	final specimen diameter		for porous material
£	yield function	£eff	effective strain
Но	initial specimen height	£r	radial strain
Ηſ	final specimen height		component
Is	second invariant of	εz	axial strain
	stress deviator		component
Jı	first invariant of	εθ	hoop strain component
	stress tensor	ν	plastic poisson ratio
Jz	second invariant of	σь	yield stress of base
	stress tensor		material
р	function of relative	σeff	effective stress
	density & particle size		
Por	critical pressure at	$\sigma_{\mathfrak{m}}$	hydrostatic stress
	density of 100%		component
R	relative density	σR	apparent effective
R¢	near-tap density		stress of a powder
α	function of relative density		compact
ß	workability index for	$\sigma_{\mathtt{r}}$	radial stress
	pore-free materials		component
σt	green strength	$\sigma_{\rm z}$	axial stress
σθ	hoop stress component		component
εf	strain at fracture	Pp1	compaction pressure