

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Ain Shams University Faculty of Engineering Architecture Department

ENHANCING THERMAL PERFORMANCE OF BUILDING ENVELOPE USING BIOMIMETIC OPTIMIZATION ALGORITHMS

A Thesis Submitted in Partial Fulfillment
Of the Requirements of DOCTOR OF PHILOSOPHY
In Architecture

by

Wael Salah Mansour Abdelrahman

Ass. Lec. in Dep. of Architecture B.Sc. Architecture. Benha University M.Sc. of Architecture. Ain Shams University

Supervision committee

Prof. Dr. Ahmed Atef El Desouky

Prof. of Architecture Faculty of Engineering Ain Shams University

Assistant Prof. Dr. Ashraf Aly Ibrahim Nessim

Ass. Prof. of Architecture Faculty of Engineering Ain Shams University

Cairo, 2021.

Ain Shams University Faculty of Engineering Architecture Department

Researcher Name: Wael Salah Mansour Abdelrahman

Thesis Title: Enhancing Thermal Performance of Building Envelope

Using Biomimetic Optimization Algorithms

Degree: Doctor of Philosophy in Architecture

Examiner's committee

Name and Ammadon	Signature		
Prof. Dr. Mohamed Khairy Amin Prof. of Architecture Shoubra Faculty of Engineering - Benha U	External Examiner		
Prof. Dr. Morad Abdelkader Abde Prof. of Architecture and Environmental Co Faculty of Engineering - Ain Shams Univer	ontrol		
Prof. Dr. Ahmed Atef El desouky Prof. of Architecture Faculty of Engineering - Ain Shams Univer	Main Supervisor rsity		
Assistant Prof. Dr. Ashraf Aly Ibr Ass. Prof. of Architecture Faculty of Engineering - Ain Shams Univer	-		
	Date: / /		
Graduate Studies			
Approval: Date: / /	Stamp:		
Approval of faculty Committee	Approval of University Committee		
Data: / /	Data: / /		

Statement

This thesis is submitted as a partial fulfillment of Doctor of Philosophy in Architectural Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Student name

Wael Salah Mansour

Signature

Date: / /

Researcher Data

Name : Wael Salah Mansour Abdelrahman.

Date of birth : 25 March 1985.

Place of birth : Cairo.

Last academic degree : Master of Science.

Field of specialization : Architectural Engineering.

University issued the degree : Faculty of Engineering, Ain Shams

University.

Date of issued degree : 2013.

Current job : Assistant Lecturer in Department of

Architecture, Shoubra Faculty of Engineering, Benha University.

Dedication

To my lovely wife "Eman Fayez" and my sons "Yamen and Ronza" who encouraged me in all hard times that I have been passing through without any hesitation or boring.

To my parents and brothers who have always encouraged me to explore and continue in creative ways.

Thesis Summary

Building envelope is the first defense line of the indoor environment in the inevitable confrontation with the outdoor environment. The main factors used for the definition of Building envelope are its function, characteristics, and impacts on whole buildings. The primary and main functions of the building envelope are to provide security and shelter. Building envelope helps in achieving comfort in built environment spaces such as daylight, thermal, acoustic, solar, indoor air quality, fire resistance, and moisture control. Building envelope is considered an essential pillar for achieving thermal comfort for the quality of the indoor environment of buildings. Building envelope contributes to providing a built environment with aesthetic quality as well.

Thermal performance of building envelope is acquired a great deal of global interest. Recently, algorithms are used in architecture for generating inspired shapes from nature which could affect thermal performance. The research investigates an architectural design Methodology based on a "Modeling-Simulation-Optimization" framework to control the thermal performance of the building envelope. The design of a parametric building envelope is optimized by biomimetic algorithms such as genetic algorithms to minimize the thermal performance. It explores the possibilities of enhancing the thermal performance of the building envelope by reducing the total thermal loads of a proposed unit in an office building. Results demonstrate that the total thermal loads for different case studies in different locations in the world are decreased when compared with the default state before the optimization process. Finally, possible configurations of the building envelope are presented to enhance thermal performance in real architectural design.

Keywords: Thermal Performance, Building Envelope, Biomimicry, Inspiration, Optimization, Genetic Algorithms.