

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

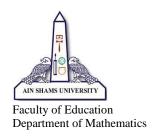
شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات



يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Some problems of the peristaltic motion of nanofluids in the presence of different external effects

Thesis

Submitted for the Partial Fulfillment of the Requirements for the Award of Master Degree in Teacher Preparation in Science (Applied Mathematics)

Submitted to
Department of Mathematics
Faculty of Education, Ain Shams University

By

Mohamed Maged Abd ElMoneim Eid

B. Science & Eductation (Mathematics)
Faculty of Education
Ain Shams University (2015)

Supervised by

Prof. Dr. Nabil Tawfek El-dabe Professor of Applied Mathematics Faculty of Education Ain Shams University Prof. Dr. Mohamed Yahya Abouzeid Nassar Professor of Applied Mathematics Faculty of Education Ain Shams University

Dr. Mona Abd El-hamed Ali MohamedLecturer of Applied Mathematics

Faculty of Education
Ain Shams University

(2020)

Faculty of Education Department of Mathematics

Candidate: Mohamed Maged Abd ElMoneim Eid

Thesis title: Some problems of the peristaltic motion of nanofluids in

the presence of different external effects.

<u>Degree</u>: Master Degree in Teacher Preparation in Science.

(Applied Mathematics)

Supervisors:

No.	Name	Signature
1.	Prof. Dr. Nabil Tawfek El-dabe	
	Emeritus professor of Applied Mathematics	
	Department of Mathematics	
	Faculty of Education	
	Ain Shams University	
2.	Prof. Dr. Mohamed Yahya Abouzeid Nassar	
	Professor of Applied Mathematics	
	Department of Mathematics	
	Faculty of Education	
	Ain Shams University	
3.	Dr. Mona Abd El-hamed Ali Mohamed	
	Lecturer of Applied Mathematics	
	Department of Mathematics	
	Faculty of Education	
	Ain Shams University	

Abstract

This thesis concerned to study the peristaltic flow of nanofluid through a non-Darcy porous medium in a non-uniform inclined channel under the presence of some different external effects; that played an important role to control the flow. In addition to, it included the study of some different models of non-Newtonian fluid as power-law model (chapter 2), Bingham and Herschel Bulkley models (chapter 3 and 4). Also, the governing equations represent a system of nonlinear differential equations that were solved numerically by using Rung-Kutta-Merson method (chapter 2 and 3) and analytically by using homotopy perturbation method (chapter 4). Moreover, the effects of entering physical parameters on the obtained solutions were explained and discussed through a set of figures.

List of publications

1. "MHD peristaltic flow of non-Newtonian power-law nanofluid through a non-Darcy porous medium inside a non-uniform inclined channel".

Published in archive of Applied mechanics, (2020). https://doi.org/10.1007/s00419-020-01810-3

2. "Peristaltic flow of Herschel Bulkley nanofluid through a non-Darcy porous medium with heat transfer under slip condition".

Under review in International Journal of Applied Electromagnetics and Mechanics, (2020).

3. "Peristaltic mixed convection slip flow of a Bingham nanofluid through a non-Darcy porous medium in an inclined non-uniform duct with viscous dissipation and radiation".

Submitted in archive of Applied mechanics, (2020).

Acknowledgement

First and forever, thanks are all to **Allah** who always blesses, helps and guides me. I would like to thank **the prophet Mohamed** "peace be upon him" who urges us to seek knowledge with patience and forever.

I would like to express my special thanks of gratitude to my awesome supervisor **Prof. Dr. Nabil Tawfek Mohamed El-dabe,** Professor of Applied Mathematics, Faculty of Education, Ain Shams University, for his help and support during preparation of the thesis, beside his kind supervision, continuous cooperation and valuable instructions.

I am very grateful to **Prof. Dr. Mohamed Yahya Abuozeid Nassar**, Professor of Applied Mathematics, Faculty of Education, Ain Shams University, for his patience, kind supervision, continuous cooperation and valuable suggestions during preparation of the thesis.

I am very grateful to **Dr. Mona Abd El-hamed Ali Mohamed,** Lecturer of Applied Mathematics, Faculty of Education, Ain Shams University for her patience, encouragement, guidance and support, beside her valuable comments during preparation of the thesis.

I would like also to thank **Prof. Dr. Ehab Fathy Mohamed Abd El-Fataah,** Head of Mathematics Department, Faculty of Education, Ain Shams University, for supporting and providing all required facilities to this work to be succeeded.

Special thanks and gratitudes are to my kind parents, for their patience, guidance, encouragements, sacrifices and continuous support along my life stages and up to now.

At last, I would like also to thank my relatives and friends for supporting me all the time.

Contents

Summary		ix
<u>Chapter 1</u>		(1-32)
Gener	ral introduction	
1. F	luid mechanics	2
1.1 N	Models of non-Newtonian fluids	3
1.1.1	Power-law model (Ostwald de Waele model)	4
1.1.2	Carreau model	5
1.1.3	Bingham plastic model	5
1.1.4	Herschel-Bulkley fluid	6
1.1.5	Casson model	6
1.1.6	Second order fluid (Walter's model)	7
1.1.7	Third grade fluid	8
1.1.8	Fourth grade fluid	8
2. P	eristaltic flows	9
2.1	Some applications of peristaltic transport	10
2.1.1	Transportation of urine from kidney to the bladder	10
2.1.2	Bolus movement through the esophagus	12
2.1.3	Chyme movement in the small intestine	13
3. N	anofluids	15
3.1 Si	ingle-phase model	15
3.2 T	wo-phase model	16
	onservation equations for viscous incompressible	17

3.4	Some application of Nanofluids	18
3.4.1	1 Heat Transfer Applications:	18
3.4.2	2 Automotive lubrication applications:	18
3.4.3	3 Electronic Applications	18
3.4.4	4 Biomedical Applications	18
3.4.5	5 Other Applications	18
3.5	Preparation of nanofluids	19
3.5.1	1 Two-step method	19
3.5.2	2 Single-step method	20
4.	Magnetohydrodynamics flows	21
4.1	Maxwell's equations	21
4.1.1	1 Gauss' Law	22
4.1.2	2 Gauss' Law for magnetism	22
4.1.3	3 Faraday's Law	22
4.1.4	4 Maxwell-Ampere Law	23
4.2	Lorentz force	23
4.3	Ohm's law	24
4.4	Navier-stokes equation in general form	25
4.5	Some applications of MHD flows	25
5.	Fluid flow through a Porous medium	26
5.1	Porosity	27
5.2	Permeability	27
5.3	Darcy's law	28
5 4	Non-Darcy flow effect	30

5.5	Some applications of fluid flow in a porous medium	32
<u>Ch</u>	apter 2	(33-59)
MI	HD peristaltic flow of non-Newtonian power-law	
naı	nofluid through a non-Darcy porous medium inside	
a n	on-uniform inclined channel	
1.	Introduction	34
2.	Mathematical formulation of the problem	37
3.	Method of solution	43
4.	Results and Discussion	45
5.	Conclusion	53
Fig	ures	55
<u>Ch</u>	apter 3	(60-77)
Per	ristaltic flow of Herschel Bulkley nanofluid through	
a n	on-Darcy porous medium with heat transfer under	
slip	condition	
1.	Introduction	61
2.	Problem modeling	64
3.	Method of solution	68
4.	Results and Discussion	68
5.	Conclusion.	73
Fig	lires	74

<u>Ch</u>	<u>apter 4</u>	(78-103)	
Per	ristaltic mixed convection slip flow of a Bingham		
nanofluid through a non-Darcy porous medium in an			
inc	lined non-uniform duct with viscous dissipation		
and	l radiation		
1.	Introduction	79	
2.	Mathematical formulation of the problem	82	
3.	Method of solution	87	
4.	Results and Discussion	89	
5.	Conclusion	93	
6.	Appendix	94	
Fig	ures	100	
<u>Nomenclature</u>		104	
Ref	<u>ferences</u>	109	
Ar	ahic Summary	125	

Summary

Summary

The study of non-Newtonian nanofluids flow in different geometric ducts gained great attention, due to their numerous biological, chemical and industrial applications. Some of these applications are discussed in the introduction. Moreover, the study of nanofluids flow under external effects is a very important topic as these external effects can control and enhance the velocity of the flow as well as its temperature and concentration.

In this thesis, we are concerned to study the peristaltic flow of incompressible non-Newtonian nanofluid through a uniform ducts in the presence of non-Darcy porous medium. It is also noticed that the flow is unsteady in the laboratory frame (fixed frame), but we separated the time by changing the flow to the moving frame with wave speed. Moreover, the flow is affected by numerous external forces, such as: uniform external magnetic field, thermal radiation, chemical reaction, viscous dissipation, Ohmic dissipation and other external forces. Thereby the governing equations for velocity, temperature and nanoparticles concentration represent a system of partial differential equations that are very difficult to be solved by ordinary methods. Therefore, In chapters 2 and 3 the governing equations are solved numerically by using Rung-Kutta-Merson method under the help of Mathematica program, version 12.0.0, while in chapter 4 the governing equations are solved analytically by using homotopy perturbation method(HPM).

The thesis consists of four chapters as follows:

Chapter 1

This chapter represents a general introduction to cover the most important and fundamental items in the thesis:

- Introduction to non-Newtonian fluids and some of their models.
- Introduction to peristaltic flow and some of its application.

- Introduction to nanofluids and some of their application.
- Introduction to Magnetohydrodynamics flows and some of their application.
- Introduction to fluid flow through a non-Darcy porous medium and some of its applications.

Chapter 2

The aim of this chapter is to study the peristaltic transport of incompressible non-Newtonian nanofluid flow through a non-uniform inclined channel. The fluid in this chapter obeys power-law model in the presence of non-Darcy porous medium. Moreover, the effects of thermal radiation, heat generation, Ohmic dissipation and a uniform external magnetic field are taken in consideration. On the other hand, the governing equations that describe the velocity, temperature and nanoparticles concentration are simplified under the assumptions of long wave length and low-Reynolds number. These equations are solved numerically by using Rung-Kutta-Merson method with the help of shooting and matching technique. It is also noticed that the solutions are obtained as functions of the physical parameters entering the problem. Thereby, these parameters play an important role to control and enhance the obtained solutions. Finally, we discussed the effects of these parameters and illustrated them through set of figures.

It is worth to note that the contents of this chapter are published in a scientific journal "Archive of applied mechanics" with impact factor 1.547

Chapter 3

The aim of this chapter is to study the peristaltic transport of incompressible non-Newtonian nanofluid flow through a non-uniform vertical channel. The fluid in this chapter obeys Herschel Bulkley model in the presence of non-Darcy porous medium. Moreover, the effects of thermal radiation, heat generation, Ohmic dissipation and a uniform