

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Ain Shams University Faculty of Engineering Structural Engineering Department

Punching Shear of High Strength Polypropylene Fiber Reinforced Concrete Slabs Interior Column Connection

A Thesis submitted in partial fulfillment of the requirements of the degree of
Master of Science in Civil Engineering
Structural Engineering Department

By

Omar Abd El-Nasser Abdou Mansour

Bachelor of Science in Civil Engineering
Structural Engineering Department
Faculty of Engineering, Ain Shams University, 2017

Supervised By

Prof. Dr. Ayman Hussein Hosny Khalil

Professor of Reinforced Concrete Structures, Structural Engineering Department Faculty of Engineering, Ain Shams University

Dr. Ibrahim Abdel-Latif Yousif

Assistant Professor, Structural Engineering Department Faculty of Engineering, Ain Shams University

Dr. Ezz El-Din Mostafa Salah Araffa

Assistant Professor, Structural Engineering Department Faculty of Engineering, Ain Shams University

Ain Shams University Faculty of Engineering Structural Engineering Department

Punching Shear of High Strength Polypropylene Fiber Reinforced Concrete Slabs Interior Column Connection

A Thesis submitted in partial fulfillment of the requirements of the degree of Master of Science in Civil Engineering Structural Engineering Department

 $\mathbf{B}\mathbf{y}$

Omar Abd El-Nasser Abdou Mansour

Bachelor of Science in Civil Engineering Structural Engineering Department Faculty of Engineering, Ain Shams University, 2017

THESIS APPROVAL

Examiners Committee	<u>Signature</u>
Prof. Dr. Mohamed El-Saeed Eissa	
Professor of Reinforced Concrete Structures Faculty of Engineering - Cairo University	
Prof. Dr. Mohamed Abdel Moaty Khalaf	
Professor of Properties and Testing of Materials Faculty of Engineering - Ain Shams University	
Prof. Dr. Ayman Hussein Hosny Khalil	
Professor of Reinforced Concrete Structures Faculty of Engineering - Ain Shams University	

Statement

This thesis is submitted as a partial fulfillment of the requirements for the degree of Master of Science (M.Sc.) in Civil Engineering (Structural Department), Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Omar Abd El-Nasser Abdou Mansour
Signature:
Date:

Researcher Data

Name : Omar Abd El-Nasser Abdou Mansour

Date of birth : 6th November 1993

Place of birth : Cairo, Egypt

Academic degree : Bachelor of Civil Engineering

Field of specialization : Structural Engineering

University issued the degree : Ain Shams University

Date of issued degree : 2017

Current job : Structural Design Engineer

ACKNOWLEDGMENT

First and foremost, I would like to express my great thanks to **Allah**, who gave me the strength, ability and conciliation to achieve this work.

I would like to express my sincerest gratitude and appreciation to my advisor **Prof. Dr. Ayman Hussein Hosny Khalil**, for his kind supervision, support and continuous guidance since the beginning. His support, motivation and encouragement were very prime to deliver this thesis in its current form.

I would like to extend sincere thanks to my advisors, **Dr. Ibrahim Abdel-Latif Yousif and Dr. Ezz El-Din Mostafa Salah Araffa**, for providing the guidance necessary to complete this research and also for their constant encouragement and valuable support.

Special thanks go to BASF Company and Eng. Emad El-Shaer for providing the polypropylene fibers used in this thesis.

Last but not least, I would like to thank my dear family for their unconditional and continuous love and support at every stage of my life.

ABSTRACT

Punching shear failure is caused by the transfer mechanism of shear forces from the slab to the slab-column connection. These shear stresses are developed from gravity loads and unbalanced moments. Once these shear stresses exceed the slab's shear capacity, punching occurs with no warning. Punching shear failures are generally brittle phenomena. Recently, using fibers has proven to give good results as a new technique to improve the punching shear resistance, and cracking control of slab-column connections. This study investigates mainly the influence of high strength crimped polypropylene fibers on the punching shear of slab interior column connection.

In the first part of the thesis, an experimental program was carried out to investigate the influence of polypropylene fibers on the properties of hardened concrete. Concrete specimens have been tested at different ages to determine the mechanical properties of concrete, namely, compressive strength, tensile splitting strength, flexural strength, and direct tensile strength. Samples with polypropylene fibers dosage of 2.5 kg/m³ showed the best results. The compressive, split tensile and flexural strengths improved significantly with an increase in strength up to 53, 45 and 40%, respectively.

The second part of the thesis employs nonlinear finite element method using ANSYS 19.0 software to investigate the punching shear strength of reinforced concrete slab-column connections focusing on four main parameters, namely, the inclusion of polypropylene fibers, flexural reinforcement ratio, column size and concrete compressive strength.

This finite element analysis comparative study includes modeling eighteen full scale slab-column connection of dimensions 3500x3500x220 mm and volumetric fiber contents 0 kg/m³ and 2.5 kg/m³. Slabs are divided into six groups and reinforced with two flexural reinforcement ratios of 0.80% and 1.27%. Compression longitudinal steel bars are of diameter 12 mm and spaced 125 mm center to center in both directions for all specimens. Columns are of size 300x300 mm and 500x500 mm, reinforced with four longitudinal steel bars of diameter 16 mm and eight longitudinal steel bars of diameter 18 mm, respectively.

The inclusion of polypropylene fibers by dosage 2.5 kg/m³ enhanced the mechanical properties of concrete which resulted in increasing the punching shear capacity ranging from 11% to 59% and the slab deflection at service loads increased ranging from 5% to 56%.

Other parameters such as increasing the flexural reinforcement ratio from 0.80% to 1.27% slightly increased the punching shear strength ranging from 6% to 11% and reduced the slab deflection at service loads ranging from 8% to 13% as the stiffness of the slabs increased.

As the critical punching shear perimeter increased by changing the column size from 300x300 mm to 500x500 mm resulted in increasing both the punching shear capacity ranging from 25% to 30% and the slab deflection at service loads ranging from 16% to 22%.

Increasing the concrete compressive strength from 25.20 MPa to 50.30 MPa resulted in increasing both the punching shear capacity ranging from 37% to 64% and the slab deflection at service loads ranging from 31% to 56%.

Keywords: Polypropylene fibers, Fiber-reinforced concrete, Punching shear strength, Flat slabs, Slab interior column connection, Experimental testing, Finite element method.

Table of Contents

ACKNOWLEDGMENT	I
ABSTRACT	II
Table of Contents	IV
List of Figures	IX
List of Tables	XV
List of Symbols	XVII
List of Abbreviation	XIX
CHAPTER (1) INTRODUCTION	1
1.1 General	1
1.2 Punching shear failure	1
1.3 Polypropylene fibers	2
1.4 Fiber-reinforced concrete	2
1.5 Objective and scope	2
1.6 Thesis organization	3
CHAPTER (2) LITERATURE REVIEW	4
2.1 Introduction	4
2.2 Punching shear failure in flat reinforced concrete slabs	4
2.3 Parameters influence punching shear resistance	5
2.3.1 Enhancing punching shear resistance considering concrete	5
2.3.2 Enhancing punching shear resistance considering reinforcement	5
2.4 History of fibers	6
2.5 Fiber types	6
2.5.1 Natural fibers	7
2.5.2 Man-made fibers	7
2.6 Polypropylene fibers	8
2.7 Fiber-reinforced concrete	8

2.8 Codes provisions for punching shear capacity	10
2.8.1 Egyptian Code of Practice (ECP 203-2018) [2]	10
2.8.2 American Concrete Institute Building Code (ACI 318-19) [3]	11
2.8.3 Eurocode 2-2004 (EC 2-2004) [4]	12
2.9 Previous research	13
2.9.1 Polypropylene fiber-reinforced concrete	13
2.9.2 Punching shear resistance for fiber-reinforced concrete slabs	20
2.9.2.1 Steel fiber-reinforced concrete slabs	20
2.9.2.2 Polypropylene fiber-reinforced concrete slabs	21
CHAPTER (3) EXPERIMENTAL PROGRAM	26
3.1 Introduction	26
3.2 Experimental program	27
3.2.1 Phase (I)	27
3.2.2 Phase (II)	27
3.3 Mix design	29
3.4 Casting and curing of specimens	30
3.5 Tests	31
3.5.1 Compressive strength Test	31
3.5.2 Tensile splitting strength test	32
3.5.3 Flexural strength test	33
3.5.4 Direct tension test	34
3.6 Test results and discussion	35
3.6.1 Compressive strength Test	35
3.6.1.1 Phase (I)	35
3.6.1.2 Phase (II)	36
3.6.2 Tensile splitting strength test	37
3.6.2.1 Phase (I)	38

3.6.2.2 Phase (II)	38
3.6.3 Flexural strength test	40
3.6.3.1 Phase (I)	40
3.6.3.2 Phase (II)	41
3.6.4 Direct tension test	43
3.6.4.1 Phase (I)	43
3.6.4.2 Phase (II)	44
3.7 Comparison between experimental results and code provisions	45
CHAPTER (4) VALIDATION OF THE FINITE ELEMENT MODELS	48
4.1 Introduction	48
4.2 Mathematical model	48
4.3 Element types	49
4.3.1 SOLID65	49
4.3.2 LINK180	50
4.3.3 SOLID185	50
4.4 Real constants	51
4.4.1 Concrete element	51
4.4.2 Steel reinforcement	51
4.4.3 Steel plates	51
4.5 Material properties	51
4.5.1 Concrete element	51
4.5.2 Steel reinforcement element	54
4.5.3 Steel plates element	54
4.6 Geometry and meshing	55
4.7 Boundary conditions	57
4.8 Analytical results validation	58

4.8.1 Comparison between load – deflection response for control slab v	with zero fibers in
both experimental study and finite element model	59
4.8.2 Comparison between load – deflection response for slab with fib	per content 1.25%
in both experimental study and finite element model	60
CHAPTER (5) PARAMETRIC STUDY	61
5.1 Introduction	61
5.2 Punching shear failure mechanism	61
5.2.1 Shear stresses in the uncracked concrete zone	63
5.2.2 Aggregate interlock	63
5.2.3 Dowel action of the longitudinal reinforcing bars	63
5.2.4 Residual tensile strength	64
5.3 Punching shear in polypropylene fiber-reinforced concrete	64
5.4 Specimens details	67
5.5 Mathematical models	73
5.6 Element types	73
5.7 Real constants	73
5.8 Material properties	73
5.8.1 Concrete element	73
5.8.2 Steel reinforcement element	75
5.8.3 Steel plates element	76
5.9 Geometry and meshing	77
5.10 Boundary conditions	79
5.11 Analytical results and discussion	80
5.11.1 Effect of flexural reinforcement ratio	81
5.11.1.1 Load – Deflection response	83
5.11.2 Effect of concrete column size	86
5.11.2.1 Load – Deflection response	88
5.11.3 Effect of concrete cube compressive strength	90