

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

# بسم الله الرحمن الرحيم





MONA MAGHRABY



شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو



شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم



MONA MAGHRABY



شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

# جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات



يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار



MONA MAGHRABY

### The Effect of Different Silica Coating Techniques on Bond Strength of Resin Cement to Ultra-translucent Zirconia

#### Thesis

Submitted for the Partial Fulfillment of the Master Degree Requirements in Fixed Prosthodontics, Faculty of Dentistry, Ain Shams University

### By

### **Tijan Youssef Mohamed Abouzaid**

B.D.S. (Misr University for Science and Technology, 2009)

Faculty of Dentistry Ain Shams University 2021

### Under the supervision of

#### Prof. Dr. Tarek Salah Morsi

Professor and Head of Fixed Prosthodontics Department Faculty of Dentistry, Ain Shams University

#### Prof. Dr. Marwa Mohamed Wahsh

Professor of Fixed Prosthodontics Faculty of dentistry, Ain Shams University

#### Dr. Soha Osama Nabih

Lecturer of Fixed Prosthodontics Faculty of Dentistry, Ain Shams University

> Faculty of Dentistry Ain Shams University 2021



سورة البقرة الآية: ٣٢

### Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I would like to express my deepest appreciation to **Prof. Dr. Tarek Salah Morsi,** Professor of Fixed Prosthodontics and Head of Fixed Prosthodontics department, Faculty of Dentistry, Ain Shams University for his constant advice and meticulous supervision. His constant guidance encouragement and foresight made all the difference.

I would like to express my deepest respect to **Prof. Dr. Marwa Mohamed Wahsh**, Professor of fixed prosthodontics. Faculty of dentistry, Ain Shams University for her kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work

I would like to express my deepest gratitude to **Dr. Soha Osama Mabih**, Lecturer of fixed prosthodontics, Faculty of Dentistry, Ain Shams University for her help, guidance, her kindness, supervision, her valuable comments, effort and cooperation in this work.

Finally, I would like to thank all the staff members in crown and bridge department for their help during the course of this work.

Eijan Youssef Abouzaid

### Dedication

#### This work is dedicated to ...

My beloved Parents, for believing in me, supporting, praying and caring. I wish I could make you proud of me even more.

My sisters (Manal, Manar and Ghalia) for being there for me every step of the way, for their support and encouragement with every mean, for the love that kept me strong even in the darkest times.

**Prof. Dr. Mohamed Selim,** for his great help, knowledge, kindness and support. For being a humble mentor.

My friends, who were there for me in good and rough times, for being my second family in Egypt. I can never thank you enough.

# List of Contents

| Title                    | Page No. |
|--------------------------|----------|
|                          |          |
| Tist of Tables           | i        |
| List of Figures          | ii       |
| Introduction             | 1        |
| Review of literature     | 3        |
| Statement of the problem | 26       |
| Aim of the study         | 27       |
| Materials and Methods    | 28       |
| Results                  | 50       |
| Discussion               | 69       |
| Summary and Conclusions  | 77       |
| Recommendations          | 81       |
| References               | 82       |
| Arabic Summary           |          |

## List of Tables

| Table No.         | Title                                                                                             | Page No.  |
|-------------------|---------------------------------------------------------------------------------------------------|-----------|
| Table (1):        | Materials used in the study                                                                       | 28        |
| <b>Table (2):</b> | Technical properties of sintered BruxZir And                                                      |           |
| <b>Table (3):</b> | Summary for the methodology                                                                       | 29        |
| <b>Table (4):</b> | Elemental composition of untreated cubic zi                                                       | rconia 52 |
| <b>Table (5):</b> | Elemental composition of cubic zirconia treated with tribochemical silica coating                 | -         |
| <b>Table (6):</b> | Elemental composition of cubic zirco zirconia plate after application of sodium solution          | silicate  |
| <b>Table (7):</b> | Elemental composition of cubic zirco zirconia plate after application of terorthosilicate sol-gel | traethyl  |
| <b>Table (8):</b> | Descriptive statistics of shear bond strength for samples with different surface treatments       | '         |
| <b>Table (9):</b> | Mean ± standard deviation (SD) of sheat strength (MPa) for samples with different treatments      | surface   |

## List of Figures

| Fig. No.            | Title Page                                                                                                                     | No. |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure (1):         | BruxZir Anterior blank                                                                                                         | 29  |
| Figure (2):         | Thickness of zirconia plate 3 mm.                                                                                              |     |
| Figure (3):         | Cutting of ultra-translucent zirconia blank via Isomet 4000 microsaw                                                           | a   |
| Figure (4):         | Sintering machine                                                                                                              | 32  |
| <b>Figure (5):</b>  | Cojet sand                                                                                                                     | 33  |
| <b>Figure (6):</b>  | Parts of split Teflon mold                                                                                                     | 34  |
| <b>Figure (7):</b>  | Assembled Teflon mold                                                                                                          | 34  |
| Figure (8):         | The tip of prophy jet 1 cm apart from the sample                                                                               | 35  |
| Figure (9):         | Sodium silicate solution in a plastic container to be sprayed on zirconia surfaces.                                            |     |
| <b>Figure (10):</b> | Dryer furnace                                                                                                                  | 37  |
| <b>Figure (11):</b> | Heat treatment of the silica gel                                                                                               | 37  |
| <b>Figure (12):</b> | The sol-gel in the beaker                                                                                                      | 39  |
| <b>Figure (13):</b> | Preparing the samples to be dipped in the sol-gel                                                                              | 39  |
| <b>Figure (14):</b> | Zirconia samples after dipping                                                                                                 | 40  |
| <b>Figure (15):</b> | Scanning electron microscope with energy dispersive X-ray unit                                                                 |     |
| <b>Figure (16):</b> | <b>A):</b> Polyvinylchloride water pipe and zirconia sample. <b>B):</b> Acrylic resin poured inside the polyvinylchloride mold | e   |
| <b>Figure (17):</b> | Zirconia plate inside PVC mold filled with acrylic resin.                                                                      |     |
| <b>Figure (18):</b> | Zirconia plate with acrylic resin base                                                                                         | 42  |
| <b>Figure (19):</b> | Application of Silane coupling agent on zirconia surface                                                                       |     |
| <b>Figure (20):</b> | Tube bonded to zirconia plate                                                                                                  | 44  |
| <b>Figure (21):</b> | Injection of resin cement inside the tube                                                                                      | 44  |
| <b>Figure (22):</b> | Resin cement cylinders after removal of the tube                                                                               |     |

# List of Figures (CONT....)

| Fig. No.            | Title                                                                                               | Page No.          |
|---------------------|-----------------------------------------------------------------------------------------------------|-------------------|
| Figure (23):        | Samples in the thermo cycling device                                                                | 45                |
| Figure (24):        | Shear bond strength testing                                                                         |                   |
| <b>Figure (25):</b> | SEM of untreated cubic zirconia plate. (5000                                                        |                   |
| <b>Figure (26):</b> | SEM of untreated zirconia plate (10000x)                                                            |                   |
| <b>Figure (27):</b> | Elemental composition of untreated cubic zin                                                        |                   |
| <b>Figure (28):</b> | SEM image of zirconia plate treated tribochemical silica coating (5000x)                            |                   |
| <b>Figure (29):</b> | SEM image of zirconia plate treated tribochemical silica coating (10000x)                           |                   |
| <b>Figure (30):</b> | Elemental composition of cubic zirconia treated with tribochemical silica.                          |                   |
| <b>Figure (31):</b> | SEM image of zirconia plate after applica sodium silicate solution. (5000x)                         |                   |
| <b>Figure (32):</b> | SEM image of zirconia plate after applica sodium silicate solution (15000x)                         |                   |
| <b>Figure (33):</b> | Resultant coating thickness after applicat sodium silicate solution                                 |                   |
| <b>Figure (34):</b> | Elemental composition of cubic zirconia pla application of sodium silicate solution                 |                   |
| <b>Figure (35):</b> | SEM image of zirconia plate after applica tetraethyl orthosilcate sol-gel (5000x)                   |                   |
| <b>Figure (36):</b> | SEM image of zirconia plate after applica tetraethyl orthosilicate sol-gel (10000x)                 |                   |
| <b>Figure (37):</b> | Resultant coating thickness after applicat tetraethyl orthosilicate sol-gel                         | ion of            |
| <b>Figure (38):</b> | Elemental composition of cubic zircon zirconia plate after application of tet orthosilicate sol-gel | nia of<br>raethyl |
| <b>Figure (39):</b> | Box plot showing shear bond strength (MI samples with different surface treatments                  | Pa) for           |

# List of Figures (CONT....)

| Fig. No.            | Title                                                                                                   | Page No.   |
|---------------------|---------------------------------------------------------------------------------------------------------|------------|
| Figure (40):        | Mean, Standard deviation (SD) for sh<br>strength (MPa) for samples with different<br>treatments         | nt surface |
| <b>Figure (41):</b> | Digital microscopic image of untreated representing adhesive failure                                    |            |
| <b>Figure (42):</b> | Digital microscopic image of zirconia tre tribochemical silica coating technique repadhesive failure    | oresenting |
| <b>Figure (43):</b> | Digital microscopic image of zirconia tre sodium silicate solution representing failure.                | adhesive   |
| <b>Figure (44):</b> | Digital microscopic image of zirconia tre<br>Tetraethyl orthosilicate sol-gel dip rep<br>mixed failure. | oresenting |

#### Introduction

any all-ceramic systems have been introduced for the general practitioner with various compositions, properties and indications. The introduction of computer-aided–design and computer aided manufacturing (CAD/CAM) technology has provided us with high strength ceramic like zirconia. Zirconia or zirconium dioxide (ZrO<sub>2</sub>) is a modified yttria (Y<sub>2</sub>O<sub>3</sub>) tetragonal polycrystal (Y-TZP). Yttria was added to stabilize the crystal structure transformation during firing at high temperature and to improve the physical properties of zirconia. (1)

Meanwhile, there is a major complication of veneering zirconia which is the chipping (cohesive failure) or cracking. So, as an alternative, monolithic crowns or full anatomic crowns made from ultra-translucent zirconia were introduced. Ultra-translucent zirconia has a significantly higher degree of translucency, thus providing greatly improved esthetics. The higher translucency is achieved by slight changes of the yttria  $(Y_2O_3)$  content (5 mol% or more instead of the conventional 3 mol %), which is used to stabilize the tetragonal zirconia phase, causing a higher amount of cubic phase particles. (2)

The dental team faces questions and decisions to choose the appropriate system and means of cementation. Several ceramic types demand different surface treatments and cementation procedures that will contribute to long-lasting restorations. Some zirconia restorations should be cemented with resin luting agents. These include zirconia restorations with limited mechanical retention that depends on resin bonding like resinbonded fixed partial prostheses, bonded inlays/onlays, laminate veneers and crowns to teeth with short clinical crowns. So, the success of resin bonding

#### Introduction

depends on the proper selection of resin cements and adequate treatment of tooth and restoration bonding surfaces. (1), (2)

The integrity and longevity of the tooth-cement ceramic interface are considered important factors for decreasing the risk of fracture of the restoration. The bond is usually created via two mechanisms: micromechanical attachment by air particle abrasion, silica coating or etching (hydrofluoric acid or phosphoric acid), and chemical bonding by silane coupling agent. (3)

The surface conditioning methods of the ceramic and the type of the luting cements have been proven to have a great influence on the bond strength of all ceramic restorations. However, the composition and the physical properties of zirconia differ from silica-based ceramics because it is a non-silicate ceramic. So, it requires alternative bonding techniques to achieve a strong, long term and durable bond. Recently, many techniques are being used clinically to address this problem and other approaches are under investigation. (4)

Many silica coating techniques have been performed to improve bonding of zirconia as tribochemical silica coating technique, application of sodium silicate solution and Tetraethyl orthosilicate (TEOS) sol-gel technique. In the oral conditions, saliva and repeated thermal changes continuously degrade and hydrolyze the ceramic-resin interface. Hence, the current study was designed to assess the effect of different surface treatments on the morphology topography and elemental composition of ultra-translucent zirconia. In addition to the latter's bond strength to resin cement. (3), (4), (5)