

بسم الله الرحمن الرحيم

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

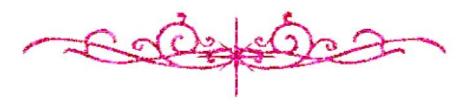
نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

بعض الوثائق

الأصلية تالفة



بالرسالة صفحات

لم ترد بالأصل

Performance Evaluation of Parallel Computing For Real-Time Image Processing

By

Amal Elsayed Aboutabl

Assistant Lecturer at the Department of Computer Science Faculty of Computers and Information, Helwan University

> A Thesis Submitted to the Faculty of Computers and Information Cairo University In Partial Fulfillment to the Requirements for the Degree of DOCTOR OF PHILOSOPHY Ĭπ COMPUTER SCIENCE

> > Under Supervision of

Prof. Dr. Salwa El-Gamal

Vice Dean for Environmental Affairs Faculty of Computers and Information

Cairo University

Prof. Dr. Ebada Sarhan

Head of the Computer Science Department Faculty of Computers and Information

Helwan University

Dr. Mohamed Nour Elsayed Ahmed

Associate Professor of Computers and Head of the Informatics Research Department The Electronics Research Institute, Cairo

FACULTY OF COMPUTERS AND INFORMATION CAIRO UNIVERSITY EGYPT

2004

Approval Sheet

Performance Evaluation of Parallel Computing For Real-Time Image Processing

By Amal Elsayed Aboutabl

A Thesis Submitted to the
Faculty of Computers and Information
Cairo University
In Partial Fulfillment to the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY

In COMPUTER SCIENCE

Approved By the Examining Committee	
Sh Fog I	
Prof. Dr. Salwa El-Gamal	
Thell	
Prof. Dr. Ebada Sarhan	
Moho Nollan	
Na Mahamed Nour Elsayed	

Approval Sheet

Performance Evaluation of Parallel Computing For Real-Time Image Processing

By
Amal Elsayed Aboutabl

A Thesis Submitted to the
Faculty of Computers and Information
Cairo University
In Partial Fulfillment to the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
In
COMPUTER SCIENCE

Prof. Dr. Salwa El-Gamal
Prof. Dr. Ebada Sarhan
Dr. Mohamed Nour Elsayed
Prof. Dr. Ahmed Sharaf Eldin
Prof. Dr. Mokhtar Boshra Riad

FACULTY OF COMPUTERS AND INFORMATION CAIRO UNIVERSITY EGYPT

October 2004

Abstract

Real-time applications based on image processing are both computationally and data intensive. This fact presents real-time image processing as a strong candidate for parallelism. In this thesis, real-time image processing is exploited for parallel computing from two different views. The first is loop parallelization since loops are the dominant control structure existing in image processing algorithms. The second is volume visualization which is taken as a real-time image processing workload.

Concerning the loop parallelization aspect, a loop fusion algorithm is proposed. The objective is to fuse loops of the same type (either DOALL or DO loops) considering identical and overlapping bounds. Data locality is enhanced by bringing references to the same data in different loops into a single loop and therefore the need for communication and data replication is reduced. In this work, the iteration spaces of loops before and after using the proposed loop fusion algorithm are executed sequentially and on a multiprocessor computer based on message-passing. The proposed loop fusion algorithm proved to be effective for both sequential and parallel execution, fully and partially overlapped iteration spaces and different types of dependencies. Increasing either the shift size (negative dependence) or the peel size (positive dependence) increases the execution time for the same number of processors due to the resulting reduction in the fused iteration space. The performance improvement achieved by the fusion algorithm increases with the increase in the trip count of the fused iteration space i.e. larger overlap. As the overlap decreases, the gain count of the fused iteration space i.e. larger overlap.

of fusion diminishes.

in their original form. An

Abstract

Real-time applications based on image processing are both computationally and data intensive. This fact presents real-time image processing as a strong candidate for parallelism. In this thesis, real-time image processing is exploited for parallel computing from two different views. The first is loop parallelization since loops are the dominant control structure existing in image processing algorithms. The second is volume visualization which is taken as a real-time image processing workload.

Concerning the loop parallelization aspect, a loop fusion algorithm is proposed. The objective is to fuse loops of the same type (either DOALL or DO loops) considering identical and overlapping bounds. Data locality is enhanced by bringing references to the same data in different loops into a single loop and therefore the need for communication and data replication is reduced. In this work, the iteration spaces of loops before and after using the proposed loop fusion algorithm are executed sequentially and on a multiprocessor computer based on message-passing. The proposed loop fusion algorithm proved to be effective for both sequential and parallel execution, fully and partially overlapped iteration spaces and different types of dependencies. Increasing either the shift size (negative dependence) or the peel size (positive dependence) increases the execution time for the same number of processors due to the resulting reduction in the fused iteration space. The performance improvement achieved by the fusion algorithm increases with the increase in the trip count of the fused iteration space i.e. larger overlap. As the overlap decreases, the gain of fusion diminishes.

Loop skewing is a loop transformation that reshapes the iteration space of a loop nest. Some loop nests cannot be parallelized if kept in their original form. An analysis and investigation of loop skewing is performed for the objective of exposing parallelism. Unimodular transformation matrices are used to represent loop skewing. Loop bounds of a loop nest are represented as a linear system of inequalities. This linear system of inequalities is solved after applying the transformation to obtain the new loop bounds using the Fourier Motzkin algorithm. A detailed analysis is performed in terms of the shape of the skewed iteration space which is divided into

miling, are operated on a simulated message-passing parallel computer. An interpretation of two nested loops containing 5000 iterations is used i.e. m*n=5000 compand in represent the number of iterations of the two loops. Nine different interpretations of m and n are experimented.

The aim of three-dimensional visualization is to effectively display and epresent the 3D nature of objects so as to provide for better means for their nanipulation and analysis. A technique for parallel volume rendering based on the hear-warp volume rendering technique is proposed. The performance of the proposed technique which is slices-based, is compared to the existing scanline-based technique using simulation and a set of performance measures such as execution time, speedup, average processor utilization, average processor wait time, average interconnection network utilization and average memory utilization. Four different image sizes (64³, 128³, 256³ and 98x34²) and three groups of typical machine simulation parameters are used. For each image size per group, six different shift ratios (0.1, 0.2, 0.3, 0.4, 0.5 and 0.9), reflecting variations in viewing angles, are experimented. A hierarchical cluster architecture with four clusters and four processors/cluster is simulated as well as the proposed slices-based technique and the scanline-based technique. Comparing the the proposed slices-based technique and the existing scanline-based technique, the percentage improvement in speedup is up to 19%.

Certification

I certify that this work has not been accepted in substance for any academic degree and is not being concurrently submitted in candidature for any other degree.

Any portions of this thesis for which I am indebted to other sources are mentioned and explicit references are given.

Student Name

Amal Elsayed Aboutabl

Signature

Anal Aboutabl

Table of Contents

	ļ	Page
	İ	i
Table of Contents		v
List of Figures		vii
List of Tables		vii
Acknowledgment		
Abstract		ix
Charter 1 Trates duction and Sc	one of Work	
Chapter 1 Introduction and Sc	cope of work	1
1.1. Introduction		5
1.2. Scope of Work		5
Chapter 2 Review of Literatur	e	
2.1. Introduction		7 '
2.2. Classification of Computer Archite	cture Models	8
2.3. Parallel Computer Architecture Mo		8
2.3.1. MIMD Parallel Models		11
2.3.1.1. Shared Memory Multip	processors	12
2.3.1.2. Message Passing Multi		13
2.3.1.3. Distributed Shared Me	mory	13
2.3.2. SIMD Parallel Models		15
2.4. Parallel Computation Models		16
2.4.1. A Framework for Modeling	Multicomputer Activity	17
2.4.2. Other Models		18
2.5. Real-Time Computing		19
2.6. Survey of Real-Time Image Proces	sing	20
2.6.1. Levels of Image Processing		21
2.6.1.1. Low-level Processin	g	21
2.6.1.2. Intermediate-level Pr	rocessing	23
2.6.1.3. High-level Processin		24
2.6.2. Grey-Level Segmentation (T	Thresholding)	25
2.6.2.1. Using a Single Thres	hold Value	25
2.6.2.2. Using Edge Pixels		25
2.6.2.3. Iterative Sclection		26
2.6.2.4. Method of Grey Lev	-	26
2.6.2.5. Entropy-based Three	sholding	27
2.6.2.6. Fuzzy Sets		27
2.6.2.7. Minimum Error Thre	-	28
2.6.3. Parallel Watershed Transform	nation Algorithms for Image	28
Segmentation		
2.6.4. Parallel Range Image Segmen	ntation	29
2.6.5. Parallel Image Registration		30
2.6.6. Parallel Algorithms for Image	e Histogramming and	31
Connected Components		
2.6.6.1. Parallel Transpose		32
2.6.6.2. Parallel Broadcast		32

	Page
2.6.6.3. Parallel Histogramming	33
2.6.6.4. Parallel Connected Components	34
2.6.7. Performance Modeling for Image Processing	34
2.6.7.1 One- and Two- Dimensional Decomposition	35
2.6.7.2. A Generic Performance Model	36
2.7. Parallel Languages and Compilers	37
2.8. Performance Evaluation of Parallel Systems	41
2.8.1. Performance Evaluation Methodologies	41
2.8.2. Performance Metrics	42
2.8.2.1. Application Structure Metrics	42
2.8.2.2 Scalability Metrics	43
Chapter 3 Transforming Loops for Parallelism : Survey and	1
Chapter 5 Transforming Loops for Lataneism Courtey and	•
Proposal of a Parallel Loops Fusion Algorithm	46
3.1. Introduction	40 47
3.2. Basic Concepts for Loop Transformations	47
3.2.1. Task- and Data-Parallelism	47
3.2.2. Data Dependence	48
3.2.2.1. Types of Data Dependence Relations	46 49
3.2.2.2. Data Dependence in Loops	52
3.3. Loop Transformation Methods	52 52
3.3.1. Simple Loop Transformation	52 52
3.3.2. Statement Reordering	54 53
3.3.3. Unswitching	
3.3.4. Loop Peeling	54 54
3.3.5. Loop Splitting	54 54
3.3.6. Scalar Expansion	54 55
3.3.7. Loop Fission	55 56
3.3.8. Loop Reversal	56
3.4. Scheduling Parallel Loops	58
3.4.1. Static Scheduling	58
3.4.1.1. Block Scheduling	58
3.4.1.2. Cyclic Scheduling	58
3.4.1.3. A Scheduling Method Based on Affinity Regions	58
3.4.2. Dynamic Scheduling	59
3.4.2.1. Chunk Self-Scheduling	59 50
3.4.2.2. Tapering Methods	59
3.4.3. Synchronization to Deal With Dependences	60
3.4.3.1. Using Critical Sections	60
3.4.3.2. Using Vectors of Words or Bits	· 62
3.4.3.3. Busy-waiting	62
3.5. Analysis and Investigation of Loop Fusion	63
3.5.1. Categorizing Loops for Fusion	64
3.5.2. Background on Loop Fusion	65
3.5.3. The Loop Fusion Problem	66
3.5.4. The Problem of Unsafe Fusion	68
3.5.5. Computing Accumulative Shifts	71
3.5.6. Effect of Loop Bounds on Fusion	71

t	Page
3.6. The Proposed Algorithm for Loop Fusion	73
3.7. Implementation Work and Performance Evaluation	77
3.7.1. Implementation	77
3.7.2. Performance Metrics Used	78
3.7.3. Discussion of Results	79
3.8. Concluding Remarks	81
i	
Chapter 4 Performance Evaluation of Loop Transformation	l
Based on Skewed Loops for Exploiting Parallelis	m
4.1. Introduction	89
4.2. Definitions	90
4.3. Loop Transformations Using Matrices	91
4.3.1. Representing Loop Nests as Linear Systems of Inequalities	92
4.3.2. Unimodular Transformations	92
4.4. Analysis and Investigation of the Skewing Process	94
4.4.1 Expension Devallation by Skepping Loops	94
4.4.1. Exposing Parallelism by Skewing Loops	96
4.4.2. A Transformation Matrix to Model Skewing	97
4.4.3. Skewing the Iteration Space of Example 2	98
4.5. Implementation of the Skewing Process	100
4.5.1. Characteristics of Skewed Iteration Space	101
4.5.2. Scheduling of the Loops Iteration Space	101
4.5.3. Simulation	102
4.6. Discussion of Results and Conclusion	103
CARL Line and Medical Imagin	σ
Chapter 5 Investigation of Visualization and Medical Imagin	g 113
5.1. Introduction	113
5.2. Medical Image Visualization	114
5.3. Volume Acquisition	113
5.3.1. Ultrasound	
5.3.2. Imaging Modalities	115
5.3.3. Multi-modality Imaging	115
5.3.4. Volume Reconstruction	116
5.4. Imaging Science and Medical Imaging	116
5.4.1. Visualization and Medical Applications	117
5.4.2. Interactive/Real-time Visualization	117
5.5. Visualization Methods	117
5.5.1. The Two-dimensional Approach	118
5.5.1.1. Multi-planar Reformatting	118
5.5.1.2. Oblique Sectioning	118
5,5,1,3, Curved Sectioning	118
5.5.2. The Three-dimensional Approach	119
5.5.2.1. Surface Rendering (Fitting)	119
5.5.2.2. Volume Rendering	120
5.6. Ray-casting	121
5 6 1. General Ray-Casting Model	121