

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Detection of dental rough surface shift using laser speckle photography technique

A Thesis Submitted to Faculty of Science-Ain Shams University in partial fulfillment for the Degree of Master of Science (M.Sc.) in Biophysics

By

Nouran Esmat Sayed Mahmoud

B.Sc. in Physics Faculty of Science- Ain Shams University 2014

Supervised by

Prof. Dr. Abdelsattar Mohamed Sallam

Professor of Biophysics Physics Department, Faculty of Science-ASU

Prof. Dr. Hatem Mahmoud El-Ghandour

Professor of Physics Physics Department, Faculty of Science-ASU

Assoc. Prof. Dr. Nasser Hussein Ali

Associate professor in fixed prosthodontics Department Misr University for Science and Technology

Ain Shams University Faculty of Science Physics Department

Approval Sheet

Degree: M. SC.

Title: Detection of dental rough surface shift using laser

Speckle photography Technique

Name: Nouran Esmat Sayed Mahmoud

<u>Supervisors</u>	Signature
Prof. Dr. Abdel Sattar Mohamed Sallam Physics Department Faculty of Science Ain Shams University	
Prof. Dr. Hatem Mahmoud El-Ghandour Physics Department Faculty of Science Ain Shams University	
Assoc. Prof. Dr. Nasser Hussein Ali Fixed prosthodontics Department Faculty of Dentistry Misr for Science and Technology University	

Ain Shams University Faculty of Science Physics Department

Name: Nouran Esmat Sayed Mahmoud

Degree: Master's degree

Department: Physics

Faculty: Science

University: Ain Shams

Graduation date: 2014

Registration date: 2016

Grant date: 2020

In the beginning, I bow head thanking to "Allah" who paved the way and only by his will everything can be achieved.

Deep thanks and sincere gratitude with appreciating to Prof. Dr. Abdelsattar Mohamed Sallam, Professor of Biophysics, Faculty of Science, Ain Shams University. This work would not have been possible without his guidance, support and encouragement. For his effective supervision, helpful comments, and the extensive time he devoted to this work, providing many facilities during preparation and experimental measurements, and scientific supervision that helped to accomplish this study.

I would like to express my deeply grateful and respect to Prof. Dr. Hatem Mahmoud El-Ghandour, Professor of Optics Physics, Faculty of Science, Ain Shams University, for giving me this opportunity to work under his esteemed guidance, for suggesting the work and supervising it, for useful comments and helping during the course of this work. Under his supervision I learned how to overcome many difficulties in my work.

I would like to express my deeply grateful and respect to Assoc. Prof. Dr. Nasser Hussein Ali. I wish to express profound gratitude for his constant encouragement and critical discussions throughout this research program and during the preparation of this thesis.

I would like to thank and appreciate Assoc. Prof. Dr. Alaa Elsisi I truly appreciate him and his time he spent helping me in my work.

I would like to express my deeply grateful and respect to Prof. **Dr. Gehan Mohamed** for her help, patient guidance, advice and assistance in my work.

I would like to express my deeply grateful and respect to Prof. Pr. Oziris Wances for his useful comments and helping.

Finally, no words can describe how thankful I'm to my family, my lovely husband and my lovely son for their help, encouragement and inspiration to accomplish all work.

Nouran Esmat

I would like to dedicate this work to

My family; Dad, Mum, Sisters, Esmat, Seham and my sisters Shaimaa, Ebtihal and Zahraa for their lifelong love and support without boundaries which have always been a source of motivation and happiness for me, without them after Allah this work would have been completed.

I would like to send special thanks, full of gratitude and love, to my lovely Husband Mohamed for his love, support and care and also I would like to send special thanks my son Adam for his pure smile, lovely warm Hugs and love which helped me to continue.

Finally I would like also to dedicate this work to my Husband's family for their love and support.

LIST OF CONTENTS

Title Pag	ge (10.
Acknowledgement	i
Dedication	ii
Contents	iii
List of Tables	V
List of Figures	vi
List of Abbreviations	ix
Abstract	X
Chapter I	
Introduction and Literature Review	
1.1 Introduction	1
1.2 Literature Review	2
Chapter II	
Theoretical Aspects	
2.1 LASER speckles	10
2.1.1 Formation of LASER speckles pattern and their	12
characteristics	
2.2 Interaction of LASERs with dental hard tissues	16
2.3. Enamel and dental composition as the basis for laser	16
interaction dental.	
2.4. Objective and subjective speckles	18
2.5. Speckle photography	20
2.6. Advantages and applications of speckle photography	21
2.7. Elastic properties and hardness of enamel and dentin	23
2.8. Deformation of whole teeth under load	24
2.9 Tooth deformation due to load applied	28

Chapter III	
Materials and Methods	
3.1. Materials	29
3.1.1Extracted teeth	29
3.1.2 LASER source	31
3.1.3 Digital camera	31
3.1.4 Image processing computer program	31
3.1.5 Finite element analysis	31
3.2 Methods	32
3.2.1 Construction of teeth blocks	32
3.2.2 Construction of holding device	33
3.2.3 LASER light application	34
3.2.4 Application of load	34
3.2.5 Imaging tooth surface	35
3.2.6 Image analysis (management)	36
3.2.7 Finite element analysis	
Chapter IV	
Results and Discussion	
Results	44
Discussion	68
Conclusion	71
Advantages of the system	71
References	72
Arabic Summary	

LIST OF TABLES

Table No.	Description	Page No.
Table (1)	Samples grouping before and after load application	35
Table (2)	Comparison of key dimension of tooth	42
Table (3)	Contrast and shift of 1st tooth	44
Table (4)	Contrast and shift of 2 nd tooth	45
Table (5)	Contrast and shift of 3 rd tooth	45
Table (6)	Contrast and shift of 4th tooth	46
Table (7)	Contrast and shift of 5th tooth	46
Table (8)	Contrast and shift of 6 th tooth	47
Table (9)	Contrast and shift of 7th tooth	47
Table (10)	Contrast and shift of 8 th tooth	48
Table (11)	Contrast and shift of 1st tooth	55
Table (12)	Contrast and shift of 2 nd tooth	56
Table (13)	Contrast and shift of 3 rd tooth	56
Table (14)	Contrast and shift of 4th tooth	57
Table (15)	Contrast and shift of 5 th tooth	57
Table (16)	Contrast and shift of 6th tooth	58
Table (17)	Contrast and shift of 7 th tooth	58
Table (18)	Contrast and shift of 8 th tooth	59

LIST OF FIGURES

Figure	Description	Page No.
Figure (1)	Specular and diffuse reflection of a light beam	11
Figure (2)	Deviations of real surface from an ideal plane surface	12
Figure (3)	Speckle pattern formation under illumination of rough surface by light transmission	13
Figure (4)	Speckle image	14
Figure (5)	Speckle pattern formation under illumination of rough surface by light reflection	15
Figure (6)	Two scheme of speckle pattern formation under illumination of a rough surface by laser light	19
Figure (7)	Tooth nomenclature conventions	26
Figure (8)	Load /displacement plot for an implant in dense bone	27
Figure (9)	Deformation and pixel plot	28
Figure (10)	Measuring crown dimension	30
Figure (11)	A) Copper ring Teflon fold B) Teflon mould assembled	32
Figure (12)	The holding device	34
Figure (13)	Assembled system showing a) laser source, b) mount tooth in loading, and c) digital camera photography	36
Figure (14)	Schematic diagram of the system	36
Figure (15)	Speckle peaks line profile of intensities as detected by special image processing software	37
Figure (16)	Overall procedure used in this work	38
Figure (17)	Structure of premolar tooth	40
Figure (18)	DICOM images from CT scan	41
Figure (19)	Meshed model a) STL model b) 3D tetra mesh in Hyper Mesh	43

List of Figures

Figure (20)	The relation between contrast and tooth shift at control	48
Figure (21)	The relation between contrast and tooth shift at 3000 g	49
Figure (22)	The relation between contrast and tooth shift at 100 g	49
Figure (23)	The relation between contrast and tooth shift at 200 g	50
Figure (24)	The relation between contrast and tooth shift at 300 g	50
Figure (25)	The relation between contrast and tooth shift at 400 g	51
Figure (26)	The relation between contrast and tooth shift at 500 g	51
Figure (27)	The relation between contrast and tooth shift at 600 g	52
Figure (28)	The relation between contrast and tooth shift at 700 g	52
Figure (29)	The relation between contrast and tooth shift at 800 g	53
Figure (30)	The relation between contrast and tooth shift at 900 g	53
Figure (31)	The relation between contrast and tooth shift at 1000 g	54
Figure (32)	The relation between different loads and tooth shift for all tooth	54
Figure (33)	The relation between different loads and speckles contrast for all teeth	55
Figure (34)	The relation between contrast and tooth shift at control	59
Figure (35)	The relation between contrast and tooth shift at 3000 g	60
Figure (36)	The relation between contrast and tooth shift at 100 g	60
Figure (37)	The relation between contrast and tooth shift at 200 g	61
Figure (38)	The relation between contrast and tooth shift at 300 g	61
Figure (39)	The relation between contrast and tooth shift at 400 g	62
Figure (40)	The relation between contrast and tooth shift at 500g	62
Figure (41)	The relation between contrast and tooth shift at 600 g	63
Figure (42)	The relation between contrast and tooth shift at 700 g	63
Figure (43)	The relation between contrast and tooth shift at 800 g	64

List of Figures

Figure (44)	The relation between contrast and tooth shift at 900 g	64
Figure (45)	The relation between contrast and tooth shift at 1000 g	65
Figure (46)	The relation between different loads and tooth shift for all tooth	65
Figure (47)	The relation between different loads and speckles contrast for all teeth	66
Figure (48)	3D model of the sound tooth	66
Figure (49)	The relationship between force (N) and tooth shift (micrometer)	67

LIST OF ABBREVIATIONS

Abbr.	Full Term
PTV	Periotest value
VM	Von Mises
FE	Finite element
VTK	Visualization toolkit
DICOM	Digital imaging and communication medicine
STL	Stereo lithography
LBCs	Loads and boundary conditions
ITK	Insight toolkit