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Abstract

Nowadays, individuals express their experiences and opinions through online reviews. These
reviews influence online marketing and provide a guide for potential customers allowing
them to reach real knowledge about products/services while making decisions. Sentiment
analysis is the process of analyzing opinions expressed in textual reviews automatically. The
efficiency of this process is affected by the spammed opinion information, and by the set of
representative features extracted from the reviews. Prior spam detection researches and most
sentiment classification studies integrating dimensionality reduction have focused on English
texts, with less attention to other languages, including Arabic. Huge amounts of Arabic data
have been generated due to the huge population of Arab world; and despite that, the
aforementioned technical gaps still exist for such language.

In this thesis, a supervised learning approach for Arabic reviews’ sentiment classification is
proposed. This approach utilizes optimal compact features that depend on a well
representative feature set coupled with feature reduction technique, which provides high
accuracy and time/space savings. The employed feature set includes a triple combination of
N-gram features and positive/negative N-grams counts features obtained after negation
handling. Two different linear transformation methods are studied; Principal Component
Analysis (PCA) as an unsupervised method and Latent Dirichlet Allocation (LDA) as a
supervised method. Spam detection is also employed as a prior process to the classification to
increase its robustness. Four different Arabic spam reviews detection methods are proposed
while putting more focus towards the construction and evaluation of ensemble approaches,
which integrate rule-based classification and machine learning techniques, and with the use of
content-based features that depend on N-gram features and negation handling.

The proposed Arabic sentiment classification approach and Arabic spam reviews detection
methods have been assessed by conducting several experiments. The sentiment classification
approach has been evaluated on five Arabic opinion text datasets, of different domains and
with varying sizes (1.6K up to 94K reviews). The approach has been experimented for
classifying sentiments in two (positive/negative) and three (positive/negative/ neutral) class
problems. Accuracy values for the feature reduction-based sentiment analysis approach
occurred in the range 95.5-99.8% for 2-class problem and 92—97.3% for 3-class problem and
outperformed existing related works by far of 23% for accuracy. The LDA feature reduction
outperformed PCA by an average of 4.34% in accuracy. The results also demonstrated
significant improvement with 24% increase in accuracy, 93% savings in the feature space,
and 97% decrease in the classification execution time. The four spam reviews detection
methods have been evaluated on two Arabic opinion text datasets of different sizes (1.6K and
94K reviews). The results indicated the efficiency of the ensemble method, where it achieved
accuracy values of 95.25% and 99.98% for the two experimented datasets and outperformed
existing related works by far of 25% for accuracy.
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