

# بسم الله الرحمن الرحيم



-Call 4000





شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم





# جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

# قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات



يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار













بالرسالة صفحات لم ترد بالأصل





#### Evaluation of an Antigen Detection Nano Immunoassay for Assessing the Prevalence of Schistosoma haematobium Infection in Areas at Risk in Upper Egypt

#### Thesis

Submitted for Partial Fulfillment of Master degree in Medical Parasitology

#### By

#### **Zeinab Mohamed Abdel-Hady**

M.B., B. Ch. Demonstrator at the department of Parasitology Faculty of Medicine, Ain Shams University

Under Supervision of

#### Prof. Dr/ Doreya Mohsen Mahmoud

Professor of Parasitology Faculty of Medicine, Ain Shams University

#### Prof. Dr/ Ghada Abdel Rahman Saad

Professor of Parasitology Faculty of Medicine, Ain Shams University

#### Dr/ Heba Abdel Kader Aminou

Assistant Professor of Parasitology Faculty of Medicine, Ain Shams University

#### Prof. Dr/ Ibrahim Rabea Bayoumi Ali

Professor and Head of Parasitology Department, Theodore Bilharz Research Institute

Faculty of Medicine
Ain Shams University
2020



سورة البقرة الآية: ٣٢

# Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Doreya Mohsen**Mahmoud, Professor of Parasitology Faculty of Medicine, Ain Shams University, for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Dr. Ghada Abdel Rahman Saad,** Professor of Parasitology Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Ibeba Abdel Kader Aminou**, Assistant Professor of Parasitology

Faculty of Medicine, Ain Shams University, for her great
help, active participation and guidance.

I wish to introduce my deep respect and thanks to **Prof. Dr. Ibrahim Rabea Bayoumi Ali,** Professor and Head of Parasitology Department, Theodore Bilharz Research Institute, for his kindness, supervision and cooperation in this work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Zeinab Mohamed Abdel-Hady

## Dedication

Dedicated to my caring and loving Mother, my supportive and understanding brothers, the most wonderful husband and the sunshine of my life Eyad.

Thank you for your support, really without you I would have never reached this point in my life

#### **Abstract**

**Background:** Urogenital schistosomiasis caused by *Schistosoma haematobium* is one of the major public health problems worldwide. It is thought that despite extensive efforts and integrated control programs implicated over the last few decades, the global disease burden of schistosomiasis remains unacceptably high. This persistence of the disease may be due to in part the lack of accurate diagnostic tools for case detection and community screening in endemic areas.

**Aim of the work** is to assess the prevalence of *Schistosoma haematobium* infection in certain villages at risk in Upper Egypt among children attending selected Primary and Preparatory schools. An antigen detection assay using nanoparticles conjugated with anti-schistosomal antibodies will be evaluated in comparison to direct microscopy, micro-haematuria and micro-proteinuria.

**Subjects and methods:** A cross sectional study was conducted on 290 students (192 male and 98 female) selected randomly from Primary and Preparatory schools in four villages in Beni-Suef governorate; the participating children were aged 8–15 years old. A simple questionnaire was designed based on the key indicators of urinary schistosomiasis then, terminal urine samples were collected between 10 am and 2 pm in clean container from each participant to be screened by chemical reagent strips (Combi 10) and examined by urine microscopy and sandwich ELISA techniques (traditional and IMB) for *S. haematobium* detection. Soluble egg antigen (SEA) was used to produce specific polyclonal antibodies (pAbs) which were then used as a primary capture in the sandwich ELISA techniques. The anti-SEA pAbs were labeled with horse-radish peroxidase (HRP) and used as a secondary capture.

**Results:** Out of the 290 participants, 39 children (13.4%) were positive by UM, 53 were positive by traditional sandwich ELISA, with diagnostic sensitivity (87.2%) and specificity (92.4%) and 50 were positive by IMB-sandwich ELISA with diagnostic sensitivity (94.9%) and specificity (95.2%) based on UM results. Micro-haematuria and proteinuria were assessed by chemical reagent strips which gave sensitivity of 29.5%, specificity of 90.8% for micro-haematuria alone, sensitivity of 18.4%, specificity of 92.4% for proteinuria alone, while sensitivity of 35.9%, specificity of 94.9% for combined micro-haematuria and proteinuria which indicated a highly significant association with *S. haematobium* infection (p value<0.001).

Conclusion: Combination of both clinical and epidemiological data in addition to sensitive diagnostic tools is essential for diagnosis. The present study as with other studies revealed that, IMB-ELISA based on gold nanoparticles provides more rapid and sensitive detection for SEA in urine samples of patient with active schistosomiasis. Simplicity and fast detection (10 min) are its main advantages. Moreover, its high sensitivity and specificity ensure its application with greater precision and rapid detection. Also, in addition, the prevalence of urinary schistosomiasis in these regions is considered relatively high requiring rapid implementation of control programs to decrease the prevalence and improve the community's health status.

**Keywords:** S. haematobium; chemical reagent strips; urine microscopy; ELISA; Immunomagnetic beaded ELISA technique; gold nanoparticles.

## **LIST OF CONTENTS**

| Title                                | Page No. |
|--------------------------------------|----------|
| List of Contents                     |          |
| List of Tables                       | II       |
| List of Figures                      | III      |
| List of Abbreviations                | IV       |
| Introduction                         | 1        |
| Review of Literature                 |          |
| Schistosomiasis                      | 4        |
| Diagnosis of urinary schistosomiasis | 26       |
| Nanotechnology and Nanomedicine      | 39       |
| Aim of the Work                      | 51       |
| Materials and methods                | 52       |
| Results                              | 91       |
| Discussion                           | 110      |
| Summary                              | 126      |
| Conclusion                           | 131      |
| Recommendations                      | 133      |
| References                           | 135      |

## **LIST OF TABLES**

| Table No                 | . Title F                                                                                                                          | Page             | No. |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------|-----|
| Table (1):<br>Table (2): | Socio-demographic distribution of study partici<br>Micro-haematuria, proteinuria and crystalluria among study participants (n=290) | levels           |     |
| <b>Table (3):</b>        | Schistosoma haematobium prevalence schoolchildren as determined by direct micros examination of urine sediments (n=290)            | in<br>scopic     |     |
| <b>Table (4):</b>        | Distribution of <i>S. haematobium</i> infection in re to school, age and gender among study participates to school.                |                  | 95  |
| <b>Table (5):</b>        | Prevalence of micro-haematuria and proteinurelation to <i>Schistosoma haematobium</i> infection study area                         | ria in<br>in the | 96  |
| <b>Table (6):</b>        | Correlation between crystalluria and Schisto haematobium infection                                                                 | soma             | 97  |
| <b>Table (7):</b>        | Prevalence of <i>Schistosoma haematobium</i> infeby urine microscopy, ELISA and nano-ELISA                                         |                  | 98  |
| <b>Table (8):</b>        | Prevalence of <i>S. haematobium</i> according to schools as determined by urine microscopy, E and nano-ELISA techniques            | LISĂ             | 98  |
| <b>Table (9):</b>        | Sex prevalence of urinary schistosomiasi recorded by urine microscopy, ELISA, nano-E and chemical reagent strips                   | LISA             | 99  |
| <b>Table (10):</b>       | Comparison of diagnostic accuracy of ELISA nano-ELISA based on ROC curve reading                                                   | A and            |     |
| <b>Table (11):</b>       | Testing agreement between diagnostic test discriminating results of <i>S. haematobium</i> infect                                   | ts in            |     |

### LIST OF FIGURES

| Fig  | ı. No.     | Title                                                                                  | Page I                       | No.       |
|------|------------|----------------------------------------------------------------------------------------|------------------------------|-----------|
| Fig. | (1): A     | world map showing the geographical                                                     | distribution of              | of        |
|      |            | tosomiasis with its approximate prevalence                                             |                              |           |
| _    | ` '        | initial lesion is a bilharzial granuloma                                               |                              |           |
|      |            | ological Features of the schistosomal bladder                                          |                              |           |
|      |            | unization of rabbits with SEA                                                          |                              |           |
|      |            | Rad dye reagent and BSA standard                                                       |                              |           |
| _    | ` '        | l dilutions from the standard and unknown pr                                           |                              |           |
| _    | ` '        | nonium sulfate precipitation procedure                                                 |                              |           |
| _    | ` '        | iltration Chromatography reagents                                                      |                              |           |
|      |            | in content determination by Bio-Rad protein                                            |                              |           |
|      |            | S-PAGE reagentsii-vertical electrophoresis system                                      |                              |           |
|      |            | SA reader and ELISA microtitre plate                                                   |                              |           |
|      |            | njugation of the prepared (PAb) with Horse-R                                           |                              |           |
|      | (HRF       | 2)                                                                                     |                              | 73        |
| Fig. |            | ple structured questionnaire to inquire about tion                                     |                              |           |
| Fig. | (15): Equ  | uipments for collection and handling of urir                                           | ne samples from              | m 78      |
| Fig  |            | li-test Combi 10 urine test strips                                                     |                              |           |
|      |            | dwich ELISA principle                                                                  |                              |           |
|      |            | dwich IMB-ELISA principle (modified)                                                   |                              |           |
|      |            | Prevalence of <i>S. haematobium</i> by dire                                            |                              |           |
| 5.   | exam       | ination of urine sediments                                                             |                              | 94        |
| Fig. |            | nematobium eggs in urine by dicect micro sco                                           |                              |           |
| Fig. | (21): SE   | A detection by traditional sandwich ELISA                                              | •••••                        | 98        |
| Fig. | (22): SEA  | A detection by sandwich immunomagnetic be                                              | ad-ELISA                     | 99        |
| Fig. |            | eiver-operating characteristic (ROC) curve                                             |                              |           |
|      |            | tosoma haematobium infection by ELISA                                                  |                              |           |
|      |            | and nano-ELISA (plotted by green line)                                                 |                              |           |
|      | tradit     | eractive dot diagram showing the diagnostic ional sandwich ELISA in comparison to dire | ct microscopy.               | 104       |
| Fig. | (25): Inte | ractive dot diagram (MedCalc Stadistical So diagnostic performance of nano-ELISA in    | ftware) showin comparison to | ig<br>to  |
|      | direc      | t microscopy                                                                           |                              | 104       |
| _    | ` '        | ter plot curve shows ELISA versus nano-ELISA                                           |                              |           |
| Fig. | (27): Bla  | and-Altman plots comparing ELISA with Na<br>gards mean and optical density of them     | ano-ELISA tes                | ts<br>108 |
|      |            | J                                                                                      |                              |           |

### LIST OF ABBREVIATIONS

#### Abb. Full term

| %Po           | ercent                                    |
|---------------|-------------------------------------------|
| °CD           | egree Celsius                             |
| μgΜ           | Ticrogram                                 |
| $\mu l$ $M$   |                                           |
| $\mu m$ $M$   | licrometre                                |
| $\mu M$ $M$   | Ticromole                                 |
| Ag NPsS       | ilver nanoparticles                       |
| AgA           | ntigen                                    |
| <i>AM</i>     | nte meridiem (before noon)                |
| <i>APS</i>    | mmonium Per-Sulfate                       |
| AUCA          | rea under curve                           |
| AuNPsG        | old nanoparticles                         |
| AWAA          | dult worm antigens                        |
| BCEB          | efore Common Era                          |
| <i>BPB</i>    | romo-phenol blue                          |
| BSAB          | ovine serum albumin                       |
| C $C$         | ross linking monomer concentration        |
| Ca $C$        | alifornia State                           |
| <i>CAA C</i>  | irculating anodic antigen                 |
| CCAC          | irculating cathodic antigen               |
| CDC $C$       | enters for Disease Control and Prevention |
| <i>CEFC</i>   | ationic egg fraction                      |
| CEQC          | atechol estrogen quinine                  |
| <i>CFAC</i>   | omplete Freund's adjuvant                 |
| <i>CFPD C</i> | irculating cell-free parasite DNA         |
| <i>CHRC</i>   | ercarien Hüllen reaction                  |
| CI $C$        | onfidence interval                        |
| Cm $C$        | entimeter                                 |
| CNS C         | entral nervous system                     |
|               |                                           |

# List of Abbreviations (cont...)

| Abb.        | Full term                                    |
|-------------|----------------------------------------------|
| CSA         | . Circulating schistosome antigens           |
|             | . Computerized tomography                    |
| D           |                                              |
|             | Droplet digital PCR                          |
|             | Drug delivery system                         |
|             | .Deoxyribonucleic Acid                       |
|             | Delayed type hypersensitivity                |
| DW          | * **                                         |
| e.g         |                                              |
| et al       | _                                            |
|             | Fraction antigen                             |
|             | Falcon assay screening test                  |
|             | . Fet al Calf Serum                          |
|             | . Gut associated soluble antigens            |
| gm          |                                              |
| _           | . Hydrogen peroxide                          |
| H2SO4       | • •                                          |
| HCl         | . Hydrochloric acid                          |
|             | . Human immunodeficiency virus               |
| HR          | . High resolution                            |
| HRP         | . Horse-Radish Peroxidase                    |
| hrs         | . Hours                                      |
| <i>i.m</i>  | .Intramuscular injection                     |
| <i>IARC</i> | .International Agency for Research on Cancer |
| <i>IFA</i>  | .Incomplete Freund's adjuvant                |
| <i>IFAT</i> | .Indirect immunofluorescence assay           |
| <i>IFN</i>  | .interferon                                  |
| <i>Ig</i>   | .Immunoglobulin                              |