

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Department of Medical Studies for Children

Evaluation of Motor & Cognitive Milestones in Preterm and Full Term Neonates with Hyperbilirubinemia (Follow up study)

Thesis

Submitted for the Fulfillment of PhD Degree in Childhood Studies (Department of Medical Studies for Children)

Submitted by

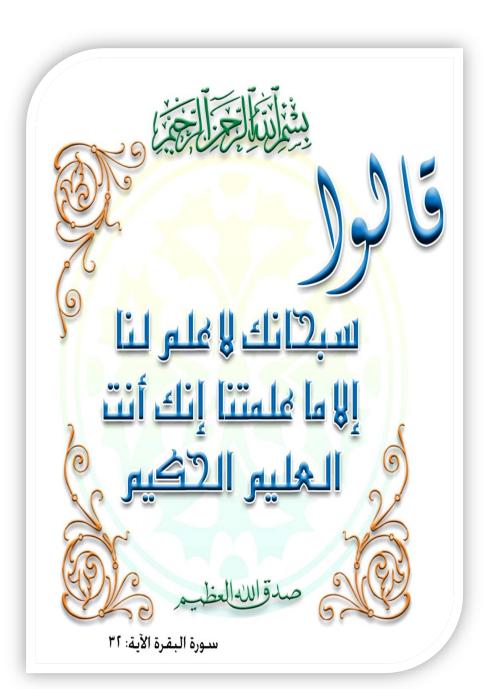
Noheir Abdelhady Younis

M.B.B.Ch/ M.s Pediatrics-Ain Shams University

Supervised by

Prof. Dr./ Ahmed Elkahky

Professor of Physiotherapy Faculty of Postgraduate Childhood studies


Prof. Dr./ Samia Samy Aziz

Professor of Public Health Faculty of Postgraduate Childhood Studies

Asst. Prof. Dr./ Hebat Allah Ali Shaaban

Assistant Professor of Pediatric Faculty of Medicine

Ain Shams University **2020**

Acknowledgments

First and foremost, I feel always indebted to Allah, the Most Beneficent and Merciful, Who gave me the strength to accomplish this work,

I wish to express my sincere thanks and gratitude to **Prof. Dr.** Samia Samy Aziz, Professor of Public Health, Faculty of Postgraduate Childhood Studies, Ain Shams University, for her valuable advice, guidance and meticulous supervision.

I am also deeply grateful and would like to express my sincere thanks and gratitude to **Prof. Dr. Ahmed El Kahky**, Professor of Physiotherapy, Faculty of Postgraduate Childhood Studies, Ain Shams University, for his kindness, support, meticulous instructions & advice.

Deep thanks to **Dr. Hebat Allah Ali,** Assistant Professor of Pediatrics, Faculty of Medicine, Ain Shams University, not only she had been a steady source of encouragement but also gave me a lot of guidance and support to accomplish this work.

My respect and deep thanks to **Prof. Dr. Howaida Al-Gebali**, Dean of faculty of Postgraduate Childhood Studies, Ain Shams University, for her valuable support, advice and attendance

Deep thanks, respect and gratitude to **Prof. Dr. Sameh Tawfeek**, Professor and Head of Pediatrics Department, in Maadi Military Hospital, for his kindness, support and attendance.

Words fail to express my profound thanks to my parents, who helped and supported me I my husband and my kids.

I would like to express my endless gratitude to patients and their families for their cooperation to complete this work, wishing them a good health.

Noheir Abdelhady Younis

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	v
Introduction	1
Aim of the Work	4
Review of Literature	
Neonatal hyperbilirubinemia	5
Developmental milestones	38
Bayley Scale	61
Subjects and methods	81
Results	87
Discussion	113
Summary & Conclusion	123
Recommendations	126
References	127
Arabic Summary	—

List of Abbreviations

Abbr.	Full-term
AAP	: American Academy of Pediatrics
ABE	: Acute bilirubin encephalopathy
ABO	: Blood group
ASQ	: Ages and Stages Questionnaire
ASQ:SE	: Ages and Stages Questionnaires: Social-Emotional
ATNR	: Asymmetric Tonic Neck Reflex
BABES	: Behavioral Assessment of Baby's Emotional Social
BAER	: Brainstem Evoked Response Audiometry
BDIST	: Battelle Developmental Inventory Screening Test
BIND	: bilirubin-induced neurologic dysfunction
BINS	: Bayley Infant Neurodevelopmental Screener
BITSEA	: Brief Infant/Toddler Social Emotional Assessment
BSID-II	: Bayley Scales of Infant Development 2nd edition
BSID-III	: Bayley Scales of Infant and Toddler Development III
BTAIS	: Birth to Three Assessment and Intervention System
CBC	: Complete Blood Count
CBE	: Chronic bilirubin encephalopathy
CDC	: Centers for Disease Control and Prevention
CDI	: Development Inventories
CP	: Cerebral palsy
DDST-II	: Denver Developmental Screening Test II
DIAL	: Developmental Indicators for the Assessment of earning
DP-3	: Developmental Profile 3
ECI-4	: Early Childhood Inventory-4
ESI-R	: Early Screening Inventory – Revised
ESP	: Early Screening Profiles
g/dl.	: Gramm per deciliter
G-6-PD	: Glucose-6-phosphatase dehydrogenase

GDD : Global Developmental Delay

GI : Gastrointestinal

IDM: Infant of Diabetic Mother

IgG: Immunoglobulin G

IL: Interleukine

ITFI : Infant-Toddler and Family Instrument

IVIG: Intravenous immunoglobulins

KIDS: Kent Inventory of Developmental Skills – 3rd Edition

MCHCs : Maternal Child Health Centers

Mmol/l: Micromole Per Litter

NDT : Neuro-developmental therapy
NICUs : Neonatal Intensive Care Units

PCV: Packed cell volume

PEDS: Parents' Evaluations of Developmental Status

RBC : Red Blood CellRh : Rheuses factor

RHDN: Rhesus hemolytic disease of the newborns

SnMP : Synthetic metalloporphyrins

TcB: Transcutaneous Bilirubinometer.

TORCH: Toxoplasmosis, otheriruses, rubella, cytomegalovirus, and

herpes

TSB: Total Serum Bilirubin

UDPGT : uridine diphosphoglucuronyltransferase enzyme

USA : United States of AmericaWHO : World Health Organization

List of Tables

Table No.	Title	Page No.
Table (1):	Differential Diagnosis of Hyperbilirubinemia	
Table (2):	Classification of Neonatal bilirubinemia Based on Mechan Accumulation	nism of
Table (3):	Comparison between the studied according to mental scales at 2month	• •
Table (4):	Comparison between groups accomental scales at 4 months of age	•
Table (5):	Comparison between groups accomental scales at 6m. of age	
Table (6):	Comparison between groups accomental scales at 9m	
Table (7):	Comparison between the studied according to mental scales at 12md age	onthes of
Table (8):	Comparison between the studied according to mental scales at 18m	groups
Table (9):	Comparison between groups accommotor scales at 2m	ording to
Table (10):	Comparison between groups accommotor scales at 4m	
Table (11):	Comparison between groups accommotor scales at 6m	•
Table (12):	Comparison between groups accommotor scales at 9m	•
Table (13):	Comparison between groups accommotor scales at 12m	•

Table (14):	Comparison between groups according to motor scales at 18m
Table (15):	Comparison between groups according to mental scales
Table (16):	Comparison between groups according to motor scales
Table (17):	The extent of the difference over the periods through mental scales in the group I
Table (18):	The extent of the difference over the periods through mental scales in the group Ib
Table (19):	The extent of the difference over the periods through mental scales in the group II
Table (20):	The extent of the difference over the periods through motor scales in group Ia 107
Table (21):	The extent of the difference over the periods through motor scales in the group Ib
Table (22):	The extent of the difference over the periods through motor scales in the group II109
Table (23):	Comparison between groups according to birth weight110
Table (24):	Comparison between groups according to S.billirubin level after 3rd day
Table (25):	Comparison between groups according to sex

List of Figures

Figure No.	. Title	Page No.
Figure (1): Figure (2):	Kramer's Rule	led by
Figure (3):	Exchange transfusion three recommended by AAP, 2004	
Figure (4):	Bar chart comparing the studied gaccording to mental scales at 2m	
Figure (5):	Bar chart between studied gaccording to mental scales at 4m	-
Figure (6):	Bar chart between groups according mental scales At 6m.	•
Figure (7):	Bar chart between groups according mental scales at 9m.	
Figure (8):	Bar chart between groups according mental scales at 12m.	•
Figure (9):	Bar chart between groups according mental scales at 18m.	-
Figure (10):	Bar chart between groups according motor scales at 2m.	•
Figure (11):	Bar chart between groups according motor scales at 4m.	•
Figure (12):	Bar chart between groups according motor scales At 6m.	
Figure (13):	Bar chart between groups according motor scales at 9m.	
Figure (14):	Bar chart between groups according motor scales at 12m.	•
Figure (15):	Bar chart between groups according motor scales at 18m.	

Figure (16):	Line between groups according to mental scales.	101
Figure (17):	Line between groups according to motor scales.	103
Figure (18): Lin	ne showing the extent of the difference over the periods through mental scales in the group Ia	104
Figure (19): Lin	the periods through mental scales in the group Ib.	105
Figure (20): Lin	the periods through mental scales in the group II	106
Figure (21): Lin	ne showing the extent of the difference over the periods through motor scales in the group Ia	107
Figure (22): Lin	ne showing the extent of the difference over the periods through motor scales in the group Ib	
Figure (23): Lin	ne showing the extent of the difference over the periods through motor scales in the group II.	
Figure (24):	Bar chart between groups according to birth weight	
Figure (25):	Bar chart between groups according to S.billirubin after 3rd day	111
Figure (26):	Bar chart between groups according to sex.	112

Abstract

BACKGROUND:

Neonatal jaundice is one of the main causes of the patient's admission in the neonatal period and is potentially linked to morbidity & developmental delay in infancy& childhood.

<u>AIM:</u> This study aimed to detect the possible occurrence of motor & cognitive delay in infants as a complication of neonatal hyperbilirubinemia.

METHODS:

A prospective longitudinal case control study was conducted from 1/2/2015 to 1/10/2018 by using Bailey scale III to evaluate and follow up motor & mental developmental parameters in cases and control groups, The sample pool of cases (group I) represented by 109 neonates which were subdivided into [group Ia to included 55 full-term neonates with jaundice and group Ib which represented by 54 preterm jaundiced neonates], this sample pool of cases was admitted in Neonatal Intensive Care Unit in New Cairo Hospital, and the control group represented by 52 non jaundiced neonates attended Health Center of The Ministry of Health in New Cairo as (control group), motor and mental developmental parameters by using Bayley scale III were followed up during 1st. eighteen months of life, all variables in this study were analyzed using SPSS software.

RESULTS:

In this study, about 161 neonates were followed up, cases group divided into 2 groups (group Ia) including 55 Full term neonates with hyperbilirubinemia, (group Ib) including 54 Premature neonates with hyperbilirubinemia & control (group II) represented by 52 Full term, clinically normal neonates, .

Findings of this study depicted that there was significant relationship between neonatal hyperbilirubinemia and further developmental delay (motor and mental) in infancy (P < 0.05), therefore, identification of developmental delay can facilitate catching up of these infants to normal development, and reduce subsequent complications.

CONCLUSION:

Neonatal jaundice should be considered and followed up for development of motor and mental skills during infancy, as an early identification of developmental delay. It can be effective in preventing susceptible developmental problems later on through interventional programs.

Keywords: Neonatal Jaundice, developmental delay, Bayley III scale.

Introduction

There are various definitions of periods in a child's development, since each period is a continuum with individual differences regarding starting and ending. Some age-related development periods and examples of defined intervals include: newborn (ages 0–28 days); infant (28days – 1 year); toddler (ages 12 months-24 months); preschooler (ages 2–5 years); school-aged child (ages 6–12 years); adolescent (ages 13–19) (*Kail & Robert, 2011*).

The neonatal period (birth to 28 days) is a time of extensive and ongoing system transition from uterine environment to external world, this includes the initial period after birth which is referred to as the perinatal period (*Fatima et al.*, 2019), the term applies to premature, full term, and postmature newborn infants (*Escobar et al.*, 2010).

An infantile developmental history is usually organized by domains of development, areas to be included are gross motor skills, fine motor skills, social interaction, language and behavioral development (*Escobar et al.*, 2010).

Early recognition of infants at risk of developmental disability is important, so early complete head-to-toe examination is important to identify abnormalities that may have an impact on a child's development. The examination begins