

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

ACCURATE TECHNIQUE BASED ON GEOMETRIC PROGRAMMING FOR ANALOG CIRCUIT SIZING

By

Abdelrahman Sayed Fathy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

in

Electronics and Communication Engineering

ACCURATE TECHNIQUE BASED ON GEOMETRIC PROGRAMMING FOR ANALOG CIRCUIT SIZING

By

Abdelrahman Sayed Fathy

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in

Electronics and Communication Engineering

Under the Supervision of

Prof. Dr. Ahmed Nader
Mohieldin
Dr. Mohsen Mohammad
Mahroos

.....

Professor of Electronics

Electronics and Communication
Engineering Department
Faculty of Engineering, Cairo University

Assistant Professor

Electronics and Communication
Engineering Department
Faculty of Engineering, Cairo University

ACCURATE TECHNIQUE BASED ON GEOMETRIC PROGRAMMING FOR ANALOG CIRCUIT SIZING

By

Abdelrahman Sayed Fathy

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

in **Electronics and Communication Engineering**

Approved by the Examining Committee	
Prof. Dr. Ahmed Nader Mohieldin	Thesis Main Advisor
Prof. Dr. Hassan Mostafa Hassan	Internal Examiner
Prof. Dr. Mohamed Amin Dessouky	External Examiner

Engineer's Name: Abdelrahman Sayed Fathy

Date of Birth: 5/5/1991 **Nationality:** Egyptian

E-mail: AbdelrahmanSF@yahoo.com

Phone: 01099658190
Address: Haram, Giza
Registration Date: 1/10/2014
Awarding Date: .../.../2020
Degree: Master of Science

Department: Electronics and Communication Engineering

Supervisors:

Prof. Dr. Ahmed Nader Mohieldin Dr. Mohsen Mohammad Mahroos

Examiners:

Prof. Dr. Ahmed Nader Mohieldin
Prof. Dr. Hassan Mostafa Hassan
Prof. Dr. Mohamed Amin Dessouky
(External examiner)

Ain Shams University

Title of Thesis:

Accurate Technique Based On Geometric Programming For Analog Circuit Sizing

Key Words:

Analog Circuits, Design Optimization, Geometric Programming, Look-up Table, Data Fitting

Summary:

In this thesis, a new method for optimization of analog circuit is presented. It is based on the method of geometric programming for convex optimization. It uses a look-up table that holds the characteristics of MOS devices to speed up the optimization. A generic optimization system is implemented in C++ that utilizes the proposed method. The implemented system is described thoroughly. The method is proved to be very efficient as well as accurate in meeting the required circuit specifications. A novel method to optimize the circuit across PVT corners is also introduced. The results of a two-stage op-amp optimization are shown and appear to be superior to results of previous optimization methods.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Abdelrahman Sayed Fathy Date: .../.../2020

Signature:

Acknowledgements

All praise is due to Allah, the Lord of the Worlds, Who taught man what he knew not. It is He who granted me the chance, strength, and ability to complete this work.

I would like to express my deepest appreciation to my dear parents for their endless support, guidance and encouragement throughout my whole life in general and during the preparation of this work in particular. Without their motivation and support, this work would never have had a chance to be finished. They have lifted my spirit up many times when I was desperate or thinking about quitting. I owe them every achievement done in my life.

I am very grateful to my supervisors, Professor Ahmed Nader and Dr. Mohsen Mahroos for their guidance, wise advices and useful suggestions. I would like to thank Professor Ahmed Nader for his proactive following up with me in every step in the preparation of this work and with college administration. I would like to thank Dr. Mohsen Mahroos for his remarkable motivation, kind words and his effort in initiating and revising this thesis.

I would like to thank my brothers and sisters and give a special thanks to my brother Ahmed for his encouragement and thoughtful advices. I would like to give another special thanks to my sister Hend for her endless motivation and caring.

I would like also to thank my colleagues and friends at Si-Vision, Mahmoud Abdel Wahab for the many useful discussions and tips, my former leader Islam Nashaat for his great support and professional guidance, Sherif Saif for his valuable advices, Mostafa Nashaat for his motivation and decent explanations, Mohammad Abdelshakour and Hassan Aly for their motivation and kind words.

Table of Contents

List of Tables			V		
Li	st of]	Figures			vi
No	omen	clature			vii
Al	bstrac	et			X
1	Intr	oductio	n		1
	1.1	Analo	g circuits i	in IC industry	. 1
	1.2	Analo	g design c	hallenges	. 2
	1.3			utomation	
	1.4	Organ	ization of	the thesis	. 3
2	Lite	rature	Review		4
	2.1	Introd	uction		. 4
	2.2			ed approach	
		2.2.1	-	knowledge-based analog design automation	
			2.2.1.1	Hierarchical decomposition	
			2.2.1.2	Design style selection	
			2.2.1.3	Specifications translation	
			2.2.1.4	Rules	
			2.2.1.5	Design plan	. 5
		2.2.2	Previous	knowledge-based systems	
			2.2.2.1	IDAC	. 6
			2.2.2.2	OASYS	. 6
			2.2.2.3	BLADES	. 6
		2.2.3	Advanta	ges and limitations	
	2.3	Optim	ization-ba	sed approach	. 7
		2.3.1	Evaluati	on engine	. 7
				Equation-based evaluation	
			2.3.1.2	Simulation-based evaluation	. 8
			2.3.1.3	Model-based evaluation	. 9
		2.3.2	Optimiza	ation algorithm	. 9
			2.3.2.1	Constrained and non-constrained optimization	. 9
			2.3.2.2	Convex and non-convex optimization	
			2.3.2.3	Deterministic and stochastic optimization	. 10
			2.3.2.4	Single-objective and multi-objective optimization	. 10
		2.3.3	Previous	research in optimization-based circuit sizing	
		2.3.4	No free	lunch theorem	. 13
	2.4	Yield	optimizati	on	. 12
	2.5	Summ			13

3	Geo	ometric Programming	14
	3.1	Motivation	14
	3.2	Geometric programming problem	14
	3.3	Analog circuit sizing as GP	15
	3.4	Development of circuit sizing using GP	15
		3.4.1 Methods to enhance the accuracy of MOS monomial models	17
		3.4.2 Methods to enhance the accuracy of performance equations	17
	3.5	Summary	18
4	Proj	posed Methodology	19
	4.1	Adaptive modeling	19
		4.1.1 Monomial fitting	19
		4.1.2 Reducing the fitting range	19
	4.2	Usage of a LUT	20
		4.2.1 Interpolation of monomials	22
		4.2.2 Bilinear interpolation	
		4.2.3 Overdrive voltage alteration	
	4.3	Optimization process	
		4.3.1 Step 1: generation of monomial models	
		4.3.2 Step 2: Termination tests	
		4.3.3 Step 3: GP optimization	
		4.3.4 SGP loop stabilization	
		4.3.5 Correction of performance parameter equations	
	4.4	Proposed yield optimization method	
	4.5	Summary	
5	Syst	tem Implementation	32
	5.1	Introduction	32
	5.2	Integrated packages	32
	5.3	System overview	32
	5.4	System usage	33
		5.4.1 Optimization equation commands	
		5.4.1.1 Posynomial input	33
		5.4.1.2 Goal command	34
		5.4.1.3 Constraint commands	
		5.4.2 Matching conditions	34
		5.4.3 LUT commands	
		5.4.4 Parameter definitions	
		5.4.4.1 Grid spacing	
		5.4.4.2 Supply voltage	
		5.4.4.3 Performance specifications	
		5.4.5 Optional optimization of sources	
		5.4.6 Corner optimization commands	
	5.5	System architecture	
	٥.5	5.5.1 Netlist parser	
		5.5.2 Circuit	
		5.5.3 Optimization manager	
		5.5.4 Circuit solver	39 39
		. J. J. T V. H. V. H. B. V.	. 17

	5.5.5 NgSPICE interface
	5.5.6 IPOPT interface
	5.5.7 MOS model database
	5.5.8 Posynomial
5.6	Summary
6 Op	timization Results
•	nclusion and Suggested Future Work
•	
7 Co 7.1	nclusion and Suggested Future Work

List of Tables

4.1	Max/Mean Percentages of Fitting Errors	20
6.1	Performance Parameters	42
6.2	Two-stage Op-Amp Optimization Comparison with [1]	42
6.3	Two-stage Op-Amp Optimized Parameters	43
6.4	Two-stage Op-Amp Optimization Comparison with [2]	43
6.5	Corners used in optimization	43
6.6	Results of PVT corners optimization for typical/worst corner	44
6.7	Results of PVT corners optimization for typical/worst corner	44
6.8	Two-stage Op-Amp Optimized Parameters	44
6.9	Execution Time Analysis	45