

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

Impact of interdisciplinary Translational Research in developing innovative therapeutic strategies in Clinical Pharmacy Science

A Thesis for Fulfillment of PhD Degree in Pharmaceutical Sciences (Clinical Pharmacy)
Submitted to Faculty of Pharmacy, Ain Shams University

By

Mohamed Ahmed Aboouf Ali

M.Sc. in Pharmaceutical Sciences (Clinical Pharmacy)
Assistant Lecturer, Clinical Pharmacy Department
Faculty of Pharmacy, Ain Shams University, Cairo, Egypt

Under supervision of:

Prof. Dr. Nagwa Ali Sabri, PhD

Professor and head of Clinical Pharmacy Department Faculty of Pharmacy, Ain Shams University, Cairo, Egypt

Prof. Dr. Ayman Al-Hendy, MD, PhD

Professor and Director of Clinical and Translational Research
Department of Obstetrics and Gynecology
University of Illinois at Chicago
Chicago, Illinois, United states of America

Dr. Sara Mahmoud Zaki, PhD

Assistant Professor of Clinical Pharmacy Department Faculty of Pharmacy, Ain Shams University Cairo, Egypt

Faculty of Pharmacy, Ain Shams University **2020**

Acknowledgements

I am deeply thankful to "Allah", to whom I relate any success in my life.

I would like to express my deepest appreciation to **Prof. Dr. Nagwa Ali Sabri, Professor and head of Clinical Pharmacy Department – Faculty of Pharmacy - Ain Shams University**, for her wonderful care and sincere help, precious time, valuable guidance and continuous support in completing this work.

I am very grateful to **Prof. Dr. Ayman Al-Hendy, Professor of Obstetrics and Gynecology, University of Illinois at Chicago**, for his precious mentorship, guidance, hosting me in his laboratory, and endless valuable help to gain lots of technical experience. I am indebted to him for everything in this work and many things in my life. Thanks for everything I have learned from you.

I am greatly thankful to **Dr. Sara M. Zaki, assistant professor of Clinical Pharmacy Department – Faculty of Pharmacy - Ain Shams University** for her close supervision, valuable efforts and continuous encouragement during the progress of this work.

I would like to thank **Dr. Qiwei Yang, Professor of Obstetrics and Gynecology, University of Illinois at Chicago** for his continuous assistance, valuable comments, and enthusiastic support that helped me a lot to keep the active pace while conducting this work.

I would like to thank **all members** of my research team at University of Illinois at Chicago and Augusta University for their support and help, as well as in Clinical Pharmacy Department, Faculty of Pharmacy - Ain Shams University

Many special thanks and deep gratitude for **my father, mother, Siblings and others** for their kind and sincere help, love and support during the progress of this work. They exert every effort and sacrifice to offer me encouragement and support that is really appreciated. Their care helped me stay focused and overcome all the barriers.

Mohamed Ahmed Abo Ouf Ali

Table of contents

Contents	Page			
List of Tables	i			
List of Figures	ii			
List of Abbreviations	v			
Abstract	vii			
Introduction	X			
Review of literature				
Uterine Fibroids				
1- Definition	1			
2- Incidence and prevalence	1			
3- Financial burden	1			
4- Classification	2			
5- Diagnosis	4			
6- Complications.	6			
7- Risk factors.	7			
8- Pathophysiology.	10			
9- Treatment	20			
Surgical	20			
 Pharmacological 	21			
 Complementary and alternative 	25			
Epigenetic therapy	28			
Translational and Clinical Research	29			
Aim of the work	31			
Patients and methods	32			
Results	53			
Discussion	129			
Summary	142			
References	145			
Appendix	170			
الملخص العربي				

List of Tables

No.	Title	Page
(1)	Studies of ethnic disparity in uterine fibroids	7
	incidence/prevalence	
(2)	List of antibodies with used dilutions	41
(3)	Human forward and reverse primers sequences for qRT-PCR	46
(4)	Fold changes of DNA damage-related gene expression in	88
	response to VDR knockdown and Vitamin D3 treatment	
(5)	Fold changes of DNA damage-related gene expression in	103
	response to Vitamin D3 and Paricalcitol treatment in UF stem	
	cells	

List of Figures

No.	Title	Page
(1)	FIGO classification of Uterine Fibroids (UFs).	3
(2)	Role of Progesterone in Uterine Fibroids pathogenesis.	13
(3)	Overview of WNT/β-catenin signaling.	15
(4)	Model for translational research, as proposed by the Evaluation	30
	Committee of the Association for Clinical Research Training.	
(5)	Patient consent form for participation in research	35
(6)	Expression of WNT signaling pathway related genes in Human	54
	Uterine Fibroid and Myometrium tissues	
(7)	Expression of β-Catenin and its responsive genes in Human	57
	Uterine Fibroid and Myometrium tissues	
(8)	Activation of β-Catenin signaling in Human uterine fibroids is	59
	associated with higher nuclear β-Catenin protein expression	
(9)	The effect of different β-catenin inhibitors and activator	62
	treatments on the proliferation of UF cells	
(10)	Effect of β-catenin inhibitor ICG-001 or activator Wnt3a on β-	63
	catenin nuclear translocation and β-catenin responsive gene	
	expression	
(11)	Effect of β-catenin genetic knockdown on its downstream	65
	signaling in UF cells.	
(12)	Estrogen and β-catenin cross talk in human myometrium and	68
	uterine fibroid cells.	
(13)	Expression of Class I HDAC enzymes in Human Uterine Fibroid	71
	and myometrium tissues and the effect of HDAC inhibitors on the	
	proliferation of HuLM cells.	
(14)	HDAC inhibitors show anti-proliferative effect on uterine fibroid	73
	cells via inhibition of β-catenin signaling pathway.	
(15)	Effect of HDACis on cell cycle and apoptosis related markers in	76
	UF cells.	

(16)	Proposed model displaying activated β-Catenin signaling, its	78
	crosstalk with estrogen and Histone deacetylase in Uterine Fibroid	
	pathogenesis	
(17)	More DNA damage, an impaired DNA repair capacity,	81
	accumulated and less VDR expression in human uterine fibroids	
	compared with the adjacent myometrium from African American	
	patients	
(18)	UF cells (HuLM) showed decreased expression of DNA repair-	83
	related genes compared with normal uterine smooth muscle cells	
	(UTSM)	
(19)	Vitamin D receptor (VDR) knockdown induced DNA damage and	85
	impaired DNA damage response in UTSMs.	
(20)	VDR knockdown decreased DNA repair-related gene expression	87
	in UTSMs.	
(21)	Vitamin D3 induced VDR expression and a decreased DNA	94
	damage load in HuLM cells.	
(22)	Vitamin D3 induced DNA repair capacity in HuLM cells.	96
(23)	Vitamin D3 increased DNA repair-related gene expression in	98
	HuLM cells.	
(24)	The effect of Vitamin D3 and Vitamin D analogs treatments on the	101
	proliferation of UF stem cells.	
(25)	The effect of Vitamin D3 and Vitamin D analog (paricalcitol)	102
	treatments on the gene expression of DNA damage signaling	
	pathway related genes in UF stem cells.	
(26)	The effect of Vitamin D3 and Vitamin D analog (paricalcitol)	107
	treatments on the gene expression of DNA repair related genes in	
	UF stem cells.	
(27)	The effect of Vitamin D3 and Vitamin D analog (paricalcitol)	108
	treatments on the protein expression of DNA repair related	
	markers in UF stem cells.	
(28)	Model of the functional relationship between the vitamin D/VDR	109
	axis and DNA damage response.	
	•	