

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

Ain Shams University
Faculty of Computers and information Science
Information Systems Department

A Hybrid Model for Protein Structure Prediction

A Thesis submitted in as a partial fulfillment of the requirements for the degree of Master of Science In Computer & Information Sciences
In Bioinformatics Specialization
By

Mohamad Yousef Mahmoud Yousef

B.Sc. in Computer and Information Sciences,
Teaching assistant at Information Systems Department,
Faculty of Computer and Information Sciences,
Ain Shams University.

Under the Supervision of

Prof. Dr. Khaled El-Bahnasy

Professor of Information Systems, Information Systems Department Faculty of Computer and Information Sciences, Ain Shams University.

Dr. Tamer A. Mostafa

Associate Professor,
Information Systems Department
Faculty of Computer and Information Sciences,
Ain Shams University.

Acknowledgements

All praise and thanks go to Allah, who provided us the ability to complete this work. I am grateful to my parents who are always providing help and support throughout those years. I hope I can give that back to them.

I would like to offer my sincerest gratitude to Dr.

Tamer Mostafa who has supported me throughout each stage of the process with his patience, knowledge and experience.

Also, I would like to express my deepest gratitude and appreciation to Dr. Khaled El-Bahnasy for his advices and valuable support.

Finally, A special appreciation and many thanks goes to Dr. NAIDU SUBBARAO for sharing his helpful notes and ideas.

Abstract

Proteins are considered the source of life. They handle a bunch of activities in all known organisms, from replication of chromosomes to carrying oxygen, and are generally responsible for controlling the cellular machinery ultimately, the phenotype of an organism. Proteins carry out their function by three-dimensional (3D) tertiary and quaternary interactions between various substrates such as DNA and RNA, and other proteins.

Protein folding is the physical process by which the one-dimensional protein structure assumes its functional conformation by transforming into its three-dimensional structure. If the 3D structure is defective, it affects the protein's expected function in the cells and body. The malfunctioning of the protein due to the misfolding is one of the main causes of some diseases, such as Alzheimer, mad cow and some types of cancer. Thus, knowing the structure of a protein is a prerequisite to gain insight into the protein's function.

Protein structure prediction "PSP" derives the 3D structure of a protein from its amino acid sequence. PSP is considered one of the most hunted topics by bioinformatics, it is involved in medical fields such drug design, and in biotechnology, such as the design of novel enzymes. PSP is different from the problem of protein design -It is the rational design of new protein molecules to fold to a target protein structure, with the goal of designing novel function and/or behavior.

The PSP remains an extremely difficult and unsolved task. The two main difficulties are calculation of protein free energy and finding the global minimum of this energy.

Protein-structure-determination lab procedures carried out are used to define and determine the exact native structure of a given protein - such as X-ray Diffraction and NMR spectroscopy - are time-consuming, expensive, and could be subjected to retrials due to its complex nature. Those disadvantages forced the development of computationally driven prediction techniques.

My objective was to tackle the obstacles of finding a global minimum energy of any given peptide by building a hybrid model that could achieve this goal.

I compared a collection of PSP ab initio-based methods against the developed hybrid model 3dProFold in terms of their accuracy and time consumption. TM-Align tool was used to measure the quality of generated structures. Experimental results show that the model achieved better average accuracy than the other methods with comparable time.

Contents

Abstract
Contents
List of Figures
List of TablesVII
List of AbbreviationsVIII
List of Publications
1. Introduction
1.1.Overview
1.2. Problem Definition
1.3. Objective
1.4. Methodology
1.5. Contribution
1.6. Thesis Structure
2. Background & Related work
2.1. What is DNA
2.2. Transcription
2.3. Translation
2.4. Secondary (local) Structures of Proteins
2.5. Protein Folding Theories
2.6. Genetic Algorithm25
2.7. Homology PSP Methods
2.7.1. MODELLER: Satisfaction of spatial restraints
2.7.2. SWISS-MODEL: Local similarity/fragment assembly
2.7.3. 3D-JIGSAW: fragment assembly
2.7.4. ESyPred3D: Template detection, alignment, 3D modeling 29
2.7.5. HHpred: Template detection, alignment, 3D modeling
2.8. Threading PSP Methods

2.8.1. RaptorX: 3D modeling, binding site prediction	30
2.9. Hybrid PSP Methods	30
2.9.1. BHAGEERATH-H: Ab initio and homology approaches	30
2.9.2. I-TASSER: ab initio and threading methods	30
2.9.3. Genetic Algorithm in the 2D Hydrophobic-Polar Model:	31
2.10. Ab initio PSP Methods	31
3. Adaptive version of GA to predict proteins structures	33
3.1. GA General steps	33
3.1.1. Encoding	34
3.1.2. Selection	36
3.1.3. Crossover	38
3.1.4. Mutation	41
3.1.5. Structure refinement	42
3.1.6. Elitism	45
3.1.7. Chromosome Evaluation	45
3.1.8. Termination	46
4. Free Energy Calculations	49
4.1. Introduction	49
4.2. ECEPPAK Tasks	49
4.3. Calculating the energy of a structure using ECEPPAK	50
5. Performance Evaluation	55
5.1. TM-Align	55
5.1.1. TM-Score	55
5.1.2. RMSD	56
5.2. Results of PSP Basic model Vs. Hybrid model	56
5.2.1. Results of Basic model	57
5.2.2. Results of hybrid model	58
5.3. 3dProFold compared to other prediction tools	60

	5.3.1. Quark	. 60
	5.3.2. Pep-Fold2	. 61
	5.3.3. Pep-Fold3	. 61
	5.3.4. 3dProFold	. 61
	5.3.5. Experimental results	. 62
6. 0	Conclusion & Future Work	. 67
	6.1. Conclusion	. 67
	6.2. Future Work	. 69
7.]	References	. 70