

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

MANUFACTURING OF BIODEGRADABLE PLASTIC FROM BIOMASS

By

Nora Abd El-Waged Abd El-Gawad Moawad Zidan

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
CHEMICAL ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020

MANUFACTURING OF BIODEGRADABLE PLASTIC FROM BIOMASS

By Nora Abd El-Waged Abd El-Gawad Moawad Zidan

> A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE In **CHEMICAL ENGINEERING**

> > Under the Supervision of

Prof. Dr.Shakinaz Taha El Sheltawy

Dr. Fatma Ibrahim Barakat

Professor Chemical engineering Faculty of Engineering, Cairo University Faculty of Engineering, Cairo University

Assistant Professor Chemical engineering

MANUFACTURING OF BIODEGRADABLE PLASTIC FROM BIOMASS

By Nora Abd El-Waged Abd El-Gawad Moawad Zidan

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
CHEMICAL ENGINEERING

Approved by the Examining Committee

Prof. Dr. Shakinaz Taha El-Sheltawy,

Thesis Main Advisor

Prof. Dr. Hanem Abd El-Rahman Sibak,

Internal Examiner

Prof. Dr. Manal Abd El-Rahman Sorour,

External Examiner

Food Engineering and Packaging Department,
 Food Technology Institute, ARC.

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020 **Engineer's Name:** Nora Abd El-Waged Abd El-Gawad Moawad

Date of Birth: 15/12/1994 **Nationality:** Egyptian

E-mail: Norazidan@live.com

Phone: 01007298537

Address: 8 Gamal Aldin AlAfghany, Giza, Egypt

Registration Date: 1/3/2018
Awarding Date:/.2020
Degree: Master of Science
Department: Chemical engineering

Supervisors:

Prof. Dr. Shakinaz Taha El-Sheltawy Ass. Prof. Dr. Fatma Ibrahim Barakat

Examiners:

Prof. Dr. Shakinaz Taha El-Sheltawy (Thesis Main Advisor)
Prof. Dr. Hanem Abd El-Rahman Sibak (Internal Examiner)
Prof. Dr. Manal Abd El-Rahman Sorour (External Examiner)
- Food Engineering and Packaging Department, Food

Technology Institute, ARC.

Title of Thesis:

Manufacturing of Biodegradable Plastic from Biomass

Key Words:

Plastic Pollution; Biodegradable Plastics; Environment; Wastes; Potatoes Peels

Summary:

Plastic is a daily used material which cause serious environmental problems as their disposal methods are dangerous to both land and water. Plastics made of bio-based sources could be seen as a promising alternative to the conventional plastics as it tends to degrade safely and rapidly and hence helps in the safe environment management.

In this research, Potatoes peels together with acetic acid and glycerol were chosen as raw materials for the production of the biodegradable plastic. The objective of this research is finding the suitable raw material amounts and operating conditions which will give the nearest specifications to the conventional plastics.

Low reaction and drying temperatures were found to be the most suitable for physical appearance of the plastic. On the other hand, high acid amounts were recommended for rapid degradation and lower water absorption. Moreover, using high amounts of starch have enhanced the degradation properties and strength of the samples.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Nora Abd El-Waged Zidan Date:../../2020

Signature:

Acknowledgments

I have taken efforts in this research. However, it would not have been possible without the kind support and help of many individuals and organizations. I would like to extend my sincere thanks to all of them.

I am highly indebted to Prof. Dr. Shakinaz El-Sheltawy and Dr. Fatma Ibrahim for their guidance and constant supervision as well as for providing necessary information regarding the research and also for their support in completing this research.

I would like to express my gratitude towards my family for their kind co-operation and encouragement which helped me in the completion of this research.

I would like to express my special gratitude to Engineer Nourhan Hisham and all the staff members of the chemical Engineering department in Cairo university for their great help and precious time in helping me during designing and cost calculations.

I would also like to extend my gratitude to the staff of "The Food Technology Research Institute" leaded by Prof. Dr. Manal Sorour as well as "The Egyptian Petrochemicals Holding Company (E-chem)" for their help and continuous support throughout the research.

My thanks and appreciations also go to my colleagues who gave me their effort and time.

Last but not least, I would like to thank every person who have willingly helped me out with his abilities and all people who have supported me and gave me the power to continue that research to the end.

To all, I extend my sincere thanks.

Table of Contents

ACK	NOWLEDGMENTS	I
DISC	CLAIMER	II
TAB	LE OF CONTENTS	III
LIST	OF TABLES	VI
LIST	OF FIGURES	.VII
NON	MENCLATURE	VIII
ABS	TRACT	IX
СНА	PTER 1 : INTRODUCTION	1
1.1.	PROBLEM BACKGROUND	1
1.2.	STATISTICS	2
1.3.	AIM OF THE WORK	4
1.4.	ORGANIZATION OF THE THESIS	5
СНА	PTER 2 : LITERATURE REVIEW	6
2.1.	DEGRADABLE PLASTIC (DP) OVERVIEW	6
2.2. PLAS	ADVANTAGES AND DISADVANTAGES OF BIODEGRADABLE STICS (BDP)	7
2.3.	CLASSIFICATION OF BIODEGRADABLE PLASTICS (BDP)	8
	2.3.1.Biodegradable Plastics (Bdp) From Starch	9
	2.3.2.Biodegradable Plastics From Cellulose	10
	2.3.3.Biodegradable Plastics From Chitosan	10
	2.3.4.Biodegradable Plastics From Protein.	10
	2.3.5.Biodegradable Plastic From Polylactic Acid (Pla)	10
2.4.	MANUFACTURING OF BIODEGRADABLE PLASTICS (BDP)	10
	2.4.1.Production Of Biodegradable Plastics From Banana Peels	11
	2.4.2.Production Of Biodegradable Plastics From Potatoes Peels (Pp)	15
	2.4.2.1.Extraction Of Starch From Potatoes Peels (Pp)	15
	2.4.2.2.Production Of Bdp From Pp Extracted Starch	
	2.4.3. Production Of Biodegradable Plastic From Corn, Cassava And Rice Starch	
	2.4.4.Production Of Biodegradable Plastic From Cellulose	25

2.5.	THE TRUTH BEHIND BIODEGRADATION OF PLASTIC	26
2.6.	JUSTIFICATION OF SOURCE SELECTION.	27
2.7.	THEORETICAL CONSIDERATION OF BDP PRODUCTION	28
CHA	PTER 3 : EXPERIMENTAL TECHNIQUE	30
3.1.	INTRODUCTION	
3.2.	MATERIALS.	30
	3.2.1.Potatoes Peels.	30
	3.2.2.Chemicals	
3.3.	EQUIPMENT USED	31
	3.3.1.Grinder	
	3.3.2.Hot Plate And Stirrer.	
	3.3.3.Dryer	
3.4.	METHODOLOGY	
	3.4.1.Extraction Of Starch	35
	3.4.2.Production Of Biodegradable Plastic.	36
	3.4.3.Characterization Of The Produced BDP	
	3.4.3.1.Biodegradation Test.	36
	3.4.3.2.Water Absorption Test.	37
	3.4.3.3.Tensile Strength Test	37
3.5.	EXPERIMENTAL DESIGN	37
	3.5.1.Preliminary BDP Sample Preparation	37
	3.5.2.Effect Of Changing Operating Conditions On The Properties Of BDP	40
	3.5.3.Effect Of Reaction Temperature On The Properties Of BDP.	41
	3.5.4.Effect Of Starch Extraction Method On The Properties Of BDP	41
	3.5.5.Effect Of Filtration On Physical Appearance of BDP.	41
	3.5.6.Justification Of Experimental Scheme Modification.	42
	3.5.7.Effect Of Raw Material Amounts On Biodegradation Behavior	44
	3.5.8.Effect Of Degradation Conditions On The Biodegradation Properties Of T Produced BDP	
	3.5.9.Effect Of Raw Material Amounts On Water Absorption.	44
	3.5.10.Effect Of Raw Material Amounts On Tensile Strength	45
3.6.	PHYSICAL APPEARANCE OF THE PRODUCED BDP	45
3.7. MAT	DIFFERENCE BETWEEN THE PROPERTIES OF BDP AND REFERENCE.	

CHA	PTER 4 : RESULTS AND DISCUSSIONS	46
4.1.	INTRODUCTION	46
4.2.	PRELIMINARY BDP SAMPLE PREPARATION	46
4.3.	EFFECT OF DIFFERENT OPERATING FACTORS ON THE	
PROD	DUCTION OF BDP	46
	4.3.1.Effect Of Changing Drying Conditions On The Properties Of BDP	47
	4.3.2.Effect Of Reaction Temperature On The Properties Of BDP.	48
	4.3.3.Effect Of Starch Extraction Method On The Properties Of The Produced BD	P . 49
	4.3.4.Effect Of Filtration On Physical Appearance of BDP	50
	4.3.5.Justification For Modifying Experimental Scheme.	51
	4.3.6.Effect Of Raw Material Amounts On Biodegradation Behavior	51
	4.3.7.Effect Of Degradation Conditions On The Biodegradation Properties Of The Produced BDP	
	4.3.8.Effect Of Raw Material Amounts On Water Absorption.	57
	4.3.9.Effect Of Raw Material Amounts On Tensile Strength	61
4.4.	PHYSICAL APPEARANCE OF THE PRODUCED BDP	65
4.5.	DIFFERENCE BETWEEN THE PROPERTIES OF BDP AND REFERE	ENCE
MATI	ERIAL.	65
CHA	PTER 5 : ECONOMIC ANALYSIS	66
5.1.IN	TRODUCTION	66
5.2.PF	ROCESS DESCRIPTION	66
5.3.C0	OST ESTIMATION	68
	5.3.1.Equipment Cost	68
	5.3.2.Total Capital Investments	69
	5.3.3.Production Cost	71
	5.3.3.1.Variable Production Cost	71
	5.3.3.2.Fixed Production Cost	73
	5.3.3.7 Total Production Cost	73
	5.3.4.Revenue And Profitability	74
	5.3.5.Break Even Analysis	74
CHA	PTER 6 : CONCLUSIONS AND RECOMMENDATIONS	76
REFE	ERENCES	77
	ENDIX A: ECONOMIC ANALYSIS	

List of Tables

Table 1. 1: Total Plastic Wastes and Disposal Methods (in billion tons)	2
Table 1. 2: Global Mismanaged Wastes	
Table 2. 1: Starch Analysis Based on Source	9
Table 2. 2: Amount of Starch in Different Raw Materials	9
Table 2. 3: Effect of Additives on Degradation behavior of BDP	
Table 2. 4: Production of BDP from Banana Peels Summary	
Table 2. 5: Production of BDP from Potatoes Peels Summary	
Table 2. 6: Production of BDP from Corn Starch Summary	
Table 2. 7: Degradation Behavior Analysis	
Table 3. 1: Potatoes Peels Characteristics	30
Table 3. 2: Acetic Acid Specifications	31
Table 3. 3: Glycerol Specifications	31
Table 3. 4: Grinder Specifications	32
Table 3. 5: Hot Plate and Magnetic Stirrer Specifications	33
Table 3. 6: Dryer Characteristics	33
Table 4. 1: Biodegradation Results of Samples Containing 5 gm Starch	
Table 4. 2: Biodegradation Results of Samples Containing 7.5 gm Starch	52
Table 4. 3: Biodegradation Results of Samples Containing 10 gm Starch	
Table 4. 4: Effect of Amount of Starch on Weight loss of Samples	54
Table 4. 5: Biodegradation Behavior in Air	
Table 4. 6: Water Absorption Behavior of Batch One (5 gm Starch)	58
Table 4. 7: Water Absorption Behavior of Batch Two (7.5 gm Starch)	58
Table 4. 8: Water Absorption Behavior of Batch Three (10 gm Starch)	58
Table 4. 9: Tensile Strength Behavior of Batch One (5 gm Starch)	61
Table 4. 10: Tensile Strength Behavior of Batch Two (7.5 gm Starch)	62
Table 4. 11: Tensile Strength Behavior of Batch Three (10 gm Starch)	62
Table 5. 1: Cost Index	68
Table 5. 2: Equipment Cost Summary	69
Table 5. 3: Factors of Estimating Fixed Capital Investment	70
Table 5. 4: Physical Plant Cost Calculation Summary	
Table 5. 5: Indirect Plant Cost Calculation Summary	70
Table 5. 6: Total Capital Investment Calculation Summary	71
Table 5. 7: Factors Used for the Estimation of Production Cost	71
Table 5. 8: Raw Materials Cost Calculations Summary	72
Table 5. 9: Electricity Calculations Summary	
Table 5. 10: Variable Cost Summary	
Table 5. 11: Fixed Production Cost Calculations Summary	
Table 5. 12: Profitability of the Project	74

List of Figures

Figure 1. 1: Top Plastic Waste Contributors in Africa	4
Figure 2. 1: Classification of Biodegradable Plastics	8
Figure 2. 2: Production of Biodegradable Plastic from Banana Peels Flow Diagram	11
Figure 2. 3: Effect of Cornstarch Concentration on BDP Tensile Strength	12
Figure 2. 4: Conventional Method of Starch Extraction from PP	16
Figure 2. 5: Extraction of Starch from roasted PP	16
Figure 2. 6: Production of BDP from PP Block Flow Diagram	17
Figure 2. 7: Effect of Type of Soil on Degradation Behavior of Plastics	18
Figure 2. 8: Extraction of Starch From Cassava	21
Figure 2. 9: Extraction of starch from Corn/ Rice	21
Figure 2. 10:Effect of Cotton Weight on Strength of BDP	22
Figure 2. 11: Effect of Cotton Weight on Water Absorption of BDP	
Figure 2. 12: World's Total Bio-based Plastics Production in 2018	
Figure 2. 13: production of BDP from Cellulosic Source	26
Figure 2. 14: Potatoes Production Statistics in Egypt (in Million Tons)	28
Figure 3. 1: Equipment Used in Experiments	.32
Figure 3. 2: Extraction of Starch Flow Diagram	34
Figure 3. 3: Manufacturing of BDP Flow Diagram	
Figure 3. 4: Proposed Experimental Scheme	39
Figure 3. 5: Justified Experimental Design	40
Figure 3. 6: Modified Experimental Scheme	43
Figure 4. 1: Effect of Glycerol Amount on Time of Drying	48
Figure 4. 2: Effect of Acid Amount on Time of Drying	48
Figure 4. 3: Effect of Reaction Temperature on Drying Time	49
Figure 4. 4: Effect of Starch Extraction Method on Properties of BDP	50
Figure 4. 5: Effect of Time of Degradation on Weight Loss Percentage at Different	
Amounts of Starch	54
Figure 4. 6: Effect of Time of Degradation on Weight Loss Percentage at Different	
Amounts of Glycerol	55
Figure 4. 7: Effect of Time of Degradation on Weight Loss Percentage at Different	
Amounts of Acid	56
Figure 4. 8: Effect of Amount of Starch on Water Absorption	59
Figure 4. 9: Effect of Amount of Glycerol on Water Absorption	60
Figure 4. 10: Effect of Amount of Acid on Water Absorption	60
Figure 4. 11: Effect of Glycerol Amount on Tensile Strength of BDP	63
Figure 4. 12: Effect of Acid Amount on Tensile Strength of BDP	
Figure 4. 13: Effect of Starch Amount on Tensile Strength of BDP	
Figure 5. 1: Production of BDP from PP According to the Previous Work	
Figure 5. 2: Break Even Analysis Graph	

Nomenclature

A: Amylose

AP: Amylopectin

ASTM: American Society for Testing and Materials

BP: Banana Peels

BDB: Biodegradable Plastic

CBP: Conventional Biodegradable Plastic

CB: Commercial Bio based DP: Degradable Plastic

FCI: Fixed Capital Investment FTIR: Fourier Transform Infrared

HEPCA: Hurghada Environmental protection and conservation association

IPC: Indirect Plant Cost MMUSD: Million Dollars

PBAT: Polybutylene Adipate Co-Terephthalate

PBSA: Aliphatic Polyester

PCE: Physical Cost of Equipment

PCL: Polycaprolactones PEA: Polyester Amides

PET: Polyethylene Terephthalate PHA: Polyhydroxyalkanoates

PLA: Polylactic Acid PP: Potatoes peels

PPB: Potatoes Peel Biodegradable Plastic

PPC: Physical Plant Cost PVA: Polyvinyl Alcohol ROI: Return on Investment RPP: Roasted Potatoes Peels

RS: Rice Starch

TCI: Total Capital Investment TPS: Thermo Plastic Starch

WCI: Working Capital Investment