

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات


يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Modified Solid Phase Peptide Synthesis of Polymyxin E₁ Antibiotic Analogues Using Microwave Assisted Irradiation

"A thesis Submitted for the Degree of Master of Science as a partial fulfillment for requirement of the Master of Science"

Thesis Presented by **Asmaa Mohamed Hamza Hussein**

Under the Supervision of

Prof. Dr. Abd Elgawad Mohamed Rabie

Professor of Organic Chemistry Ain Shams University Cairo, Egypt

Prof. Dr. Mohamed Ali Zewail

(Deceased)
Professor of Peptide Chemistry Department
National Research Centre
Cairo, Egypt

Asso. Prof. Atef Abdel-Monem Kalmouch

Associate professor of Peptide Chemistry National Research Centre Cairo, Egypt

Ain Shams University (2020)

Student Name: Asmaa Mohamed Hamza Hussein

Scientific Degree: Master of Science

Department: Chemistry

Faculty Name: Faculty of Science

University: Ain-Shams

Graduation Year: 2010

Granting Year:

Head of Chemistry Department

Prof. Dr. Ayman Ayoub Abdel-Shafi

الملا رب بردني عالما"

MY PARENTS,
MY FAMILY,
AND MY Collegues.

<u>Acknowledgment</u>

First and most, I would like to express my greatest thanks to Allah who created man and gave him the knowledge to think, believe and worship.

I am sincerely indebted and profoundly grateful to *Professor Dr. Mohamed Ali Zewail*, Professor of Peptide Chemistry, Peptide Chemistry Department, National Research Centre, for his suggestion of the research topic, his kind supervision, valuable advice, constant support and continuous guidance.

I am sincerely indebted and profoundly grateful to *Prof. Dr. Abd Elgawad Rabie*, Professor of Organic Chemistry Ain Shams University, for his kind supervision, valuable advice, constant support and continuous guidance.

It is my pleasure to give my deepest gratitude Asso.Prof. Atef .A. Kalmouch, Associate Professor of Peptide Chemistry, Peptide Chemistry Department, National Research Centre, for his valuable guidance, and fruitful advices throughout whole thesis work.

It is pleasure to give my deepest gratitude *Dr*. *Shaima Ahmed Elmowfi*, Researcher Peptide Chemistry

Department, National Research Centre, as internal supervisor, for her valuable guidance, and fruitful advices throughout the whole work.

I wish to express with thankfulness to all members of the Peptide Chemistry Department, especially *Prof. Dr. Ahmed Shalaby, Prof. Dr. Mohamed Hassan Abo-Ghalia, Dr. Ahmed Naglah, Dr. Gaber, Dr. Shaimaa Mahdy*, and *Dr. Fatma Hassan*, for their friendly and continuous advice.

I gratefully acknowledge *Prof. Dr. Sayed Eltomy* for his kind support, and his great help with the HPLC characterization, *Dr. Ragab Massoud* for his great help with the HPLC characterization, and *Dr. Mohamed Farouk* for performing the Mass analysis.

Finally, I wish to express my sincere thanks and profound gratitude to *my parents and my family* for their patience, understanding their unconditional love which alleviates all the difficulties of this work and sentimental support throughout the whole work.

Contents

Content	Page
List of abbreviations	iii
List of tables	vi
List of figures	viii
List of schemes	X
Aim of work	xi
Abstract	xiii
Introduction	
Chapter I: Chemistry of Amino Acids and Peptides: A Global View	1
A. Introductory Aspects of Amino Acids and Peptides.	1
B. Principles of Chemical Peptide Synthesis.	11
Chapter II: Methods Used For Peptide Synthesis	27
A. Solution Phase Peptide Synthesis	27
B. Solid Phase Peptide Synthesis (SPPS).	28
C. Liquid Phase Peptide Synthesis (LPPS).	30
D. Modified Solid Phase Peptide Synthesis.	31
E. Microwave Assisted Solid Phase Peptide Synthesis.	53
F. Automated Solid Phase Peptide Synthesis.	56
Chapter III: Antimicrobial Cyclic Peptides	58
A. Cyclic Peptides.	58
B. Synthetic Strategies For Bioactive Cyclic Peptides.	59

C. Polymyxins.	63
Chapter IV: Molecular Modeling	75
A. Computer-Aided Ligand Design(CALD) and Accelrys® Modules.	75
B. Molecular Modeling Studies of Polymyxins.	80
Experimental Section	
Chapter V:General Methodology	82
A. Materials and Techniques.	82
B. Instruments.	86
Chapter VI: Experimental Work	92
A. Automated SPPS of Analogues(I-V) Using Biotage [®] Initiator ⁺ Alstra TM Microwave Peptide Synthesizer	92
B. Manual Modified SPPS of Analogue(I) Using Slow Batch Method.	100
Chapter VII: Molecular Modeling Approach: Generation	106
of Hypothesis For Polymyxin Analogues (I-V).	
Chapter VIII: Determination of The Antimicrobial	120
Biological Activities of Polymyxin Analogues (I-V).	
Results and Discussion	
Chapter IX: Result and Discussion	122
A. Modified SPPS of Polymyxin Analogues (I-V).	124
1. Automated SPPS of Analogues (I-V) Using Biotage [®] Initiator ⁺ Alstra TM Microwave Peptide Synthesizer.	130
2. Manual SPPS Synthesis of Analogue(I) Using Slow Batch Method.	146

B. Molecular Modeling Studies of The Polymyxin Analogues (I-V)	166
C. Biological Evaluation of The Newly Synthesized Cyclic Peptide Polymyxin Analogues (I-V).	174
Summary and Conclusion	183
References	187
Arabic Summary	Í

List of Abbreviations

Symbol	Description
A.A	Amino Acid
АСОН	Acetic Acid
ACN	Acetic Anhydride
AMPs	Antimicrobial Peptides
Arg	L-Arginine
Asp	L-Aspartic Acid
Boc	Tert-Butyloxycarbonyl
BOP	Benzotriazol-l-yl -oxy-tri(dimethylamino)
	phosphonium hexafluorophosphate
BrOP	Bromotris (N-methyl methan a min ato)-phosphorus
	hexafluorophosphate
Bzl	Benzyl
ClOP	Chlorotris (N-methyl methanaminato)-phosphorus
ClOP	$Chlorotris (N-methylmethanaminato)-phosphorus \\ hexafluorophosphate$
CIOP	
	hexafluorophosphate
DAB	hexafluorophosphate 2,4-Diaminobutyric Acid
DAB DCC	hexafluorophosphate 2,4-Diaminobutyric Acid Dicyclohexylcarbodiimide
DAB DCC DCM	hexafluorophosphate 2,4-Diaminobutyric Acid Dicyclohexylcarbodiimide Dichloromethane
DAB DCC DCM DCHU	hexafluorophosphate 2,4-Diaminobutyric Acid Dicyclohexylcarbodiimide Dichloromethane Dicyclohexylurea

DMF Dimethylformamide

DMSO Dimethylsulfoxide

DVB Divinylbenzene

EDC 1-Ethyl-3-(3-Dimethylaminopropyl)-Carbodiimid

EDT Ethanedithiol

ESI-MS Electron Spray Ionization Mass Spectroscopy

EtOAc Ethylacetate

EtOH Ethanol

Et₂O Diethylether

Fmoc 9-Fluorenylmethyloxycarbonyl

HATU N-[(dimethylamino)-lH-1,2,3-triazolo[4,5-

6]pyridin-lylmethylene]-N-

methylmethanaminium hexafluorophosphate N-

oxide

HBTU N-[(lH-benzotriazol-l-

yl)(dimethylammo)methylene]-N-

methylmethanaminium hexafluorophosphate N-

oxide

HCTU O-(1H-6-chlorobenzotriazole-1-yl)-1,1,3,3-

tetramethyluronium hexafluorophosphate

HF Hydrofluoric Acid

Hmb 2-Hydroxy-4-methoxybenzyl

HMBA 4-Hydroxymethylbenzoic acid

HMPA 4-Hydroxymethylphenoxyacetyl

HOAt l-hydroxy-7-azabenzotriazole

List of Abbreviations

HOBt 1-Hydroxybenzotriazole

HOSu N-Hydroxysuccinimide

HPLC High Performance Liquid Chromatography

IC₅₀ Half Maximal Inhibitory Concentration

LC-MS Liquid Chromatography-Mass Spectrometry

LD₅₀ lethal dose

Leu L-Leucine

LPPS Liquid Phase Peptide Synthesis

LPS Lipopolysaccharides

IR Infra Red

MBH 4-Methylbenzhydrylamine

Met Methionine

MHA Methyl Heptanoic Acid

MHPA 4-Hydroxy-3-methoxyphenoxyacetyl

MOC Methyl Octanoic Acid

Mtr 4-Methoxy-2,3,6-trimethylbenzenesulfonyl

NMM N-Methylmorpholine

OBzl Benzyl ester

OBut Tert-Butyl ester

OM Outer Membrane

Pbf 2,2,4,6,7-pentamethyldihydrobenzofuran-5-

sulphonyl

PEG Polyethyleneglycol