

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Faculty of Women for Arts, Science and Education Botany Department

Radiation Modification of Nanoparticles to Study Their Anti-biofilm Activity of Some Pathogenic Bacteria Along with Antimicrobial Agent.

Thesis submitted by

Rawia Farag Sadeck

M.Sc. in Immunology, 2014

Submitted to partial fulfillment of requirement for The Degree of

Doctor of Philosophy in Science "Microbiology"

Botany department
Faculty of Women for Arts, Science
and Education- Ain Shams University
2020

Faculty of Women for Arts, Science and Education Botany Department

Approval Sheet

Title: Radiation Modification of Nanoparticles to Study Their Anti-biofilm Activity of Some Pathogenic Bacteria Along with Antimicrobial Agent.

Name: Rawia Farag Sadeck

SUPPERVISON COMMITTEE

Dr. Zeinab Mohamed Hassan Kheiralla	
Professor of Microbiology, Botany department- Faculty of Women for Arts, Science and Education- Ain Shams University	
Dr. Hala Abd Allah Farrag	
Professor of Medical Microbiology-Drug Radiation Research-Atomic Energy Authority, Egypt.	
Dr. Hassan Ahmed Abdelrehim	
Professor of Polymer Chemistry - Polymer Radiation Research-Atomic Energy Authority, Egypt.	
Dr. Shaimaa Mohamed Abd El-salaam	
Lecture of Microbiology, Botany department- Faculty of Women for Arts, Science and Education- Ain Shams University	

Faculty of Women for Arts, Science and Education Botany Department

Title: Radiation Modification of Nanoparticles to Study Their Anti-biofilm Activity of Some Pathogenic Bacteria Along with Antimicrobial Agent.

Name: Rawia Farag Sadeck

This thesis for Doctor of Philosophy in Microbiology degree has been approved by:

1	Dr. Zeinab Mohamed Hassan Kheiralla		
	Professor of Microbiology, Botany department- Faculty of Women for Arts, Science and Education-Ain Shams University		
2	Dr. Hala Abd Allah Farrag		
	Professor of Medical Microbiology-Drug Radiation Research-Atomic Energy Authority, Egypt.		
3	Dr. Seham Yousef Mohamed Eltablawy		
	Professor of Microbiology-Drug Radiation Research-Atomic Energy Authority, Egypt.		
4	Dr. Ahmed Abdelwahab M. Abdelhafez		
	Professor of Microbiology, Microbiology department- Faculty of Agriculture - Ain Shams University		

Declaration

No portion of the work referred to in the thesis has not been submitted for any degree at this or any other university.

> Rawia Farag Sadeck 2020

Acknowledgements

First and last thanks to Allah who gives me the power to go forward in a way illuminated with his merciful guidance.

With a grateful heart and immense pleasure, to my **Prof. Dr. Zeinab** Mohamed Hassan Kheiralla, Professor of Microbiology, Botany department-Faculty of Women for Arts, Science and Education-University of Ain Shams. I humbly submit to the glory of the Almighty for her keen supervision, help, blessing me with the necessary will and perseverance to undertake and complete my research work successfully. Actually, she was my Mom.

I gratefully acknowledge to my **Prof. Dr. Hala Abdullah Fraag**, Professor of Medical Microbiology-Drug Radiation Research-Atomic Energy Authority, Egypt. for her guidance and motivation to my work. I greatly respect her and appreciate her constructive criticism, constant encouragement and concern in bringing out my hidden talents by urging me to do my best Actually, she was more than supervisor she owned my heart.

I dedicate my sincere thanks to my **Prof. Dr. Hassan Ahmed Abdelrihim** for giving me the opportunity to work under his guidance and providing facilitates to carry out my research work

I thank **Dr. Shaimaa Abdelsalam** Lecturer of Microbiology, Botany department- Faculty of Women for Arts, Science and Education-University of Ain Shams for her contend support and valuable suggestion during my research period. I thank **Associate Professor.Dr. Eman araby and Dr. Shaimaa Abd Elkader** for their contend support and valuable suggestion during my research period. I take this opportunity to thank my colleagues and friends from laboratory for their help at various stages of my research. I sincerely thank them for giving the opportunity to work in such a valuable group.

Rawia F. Sadek

Dedication

To the persons who taught me patience, strife and pushed me towards success in life and gave me all care and duty to my tender Father and Mother. All thanks to my brothers and sisters for their support and encouragement.

Table of Contents

Subject	page
Contents	
List of Figures	i
List of Tables	V
List of Abbreviations	vi
Aim of the work	viii
Abstract	ix
1. Introduction	1
2. Review of Literature	5
2.1 Biofilm	5
2.1.1 Definition of biofilm	5
2.1.2 History of biofilm	6
2.1.3 Composition of biofilms	7
2.1.4 Formation of biofilm	7
2.2 Hazard of biofilm formation	8
2.2.1 Biofilms on biomaterials	8
2.2.2 Drinking water distribution systems	9
2.2.3 Industrial problems associated with biofilms and their control	10
2.2.4 Heat exchangers and cooling water systems	12
2.3 Microbiologically influenced corrosion	14
2.4 Common process for biofilms control	16
2.4.1 Chemical antimicrobial agents	16
2.4.2 Mechanical control	17

2.4.3 Physical control	18
2.5 Economic cost of biofilms	18
2.6 Nanotechnology	19
2.6.1 Synthesis metal nanoparticles	21
2.6.1.1 Metal oxide nanoparticles	22
2.6.2 Study of the gamma radiation effect on Nanoparticles size	27
2.7 Polymer/metal composites	28
2.7.1 Mechanisms of antimicrobial polymer/metal nanocomposites	33
2.8 Cost effectiveness	38
3 Materials and Methods	41
3.1 Sampling	41
3.1.1 Drinking water samples	41
3.1.2 Swimming pool samples	41
3.1.3 Secondary coolant system tower samples	42
3.1.3.1 Coupons samples	42
3.1.3.2 Water circulation samples	42
3.2 Media used	42
3.3 Synthesis of nanoparticles	45
3.3.1 Materials used for synthesis nanoparticles	45
3.4 Methods	45
3.4.1 Determination of free chlorine in water samples	45
3.4.2 Microbiological investigations	46
3.4.2.1 Isolation and purification of the tested bacterial isolates	46
3.4.2.2 Screening of biofilm producer isolates	47

3.4.2.2.1 Qualitative methods (modified Congo red agar method)	47
3.4.2.2.2 Quantitative analysis detection of biofilm formation by tissue culture plate method (TCP)	47
3.4.2.3 Biochemical identification of the most biofilm producer isolates	48
3.4.2.4 Antibiotic sensitivity test	49
3.4.2.5 Bio-corrosion studies for biofilm producer isolates	50
3.4.2.5.1 Coupons preparation	50
3.4.2.5.2 Weight loss measurment	51
3.4.3 Nanoparticles synthesis	52
3.4.3.1 Green synthesis of zinc oxide and copper oxide nanoparticles	52
3.4.3.2 Radiation modification of the synthesized nanoparticles	53
3.4.3.3 Ex-situ synthesis of copper /zinc oxide nano composite polymer	53
3.4.4 Nanoparticles characterization	53
3.4.4.1 UV-VIS spectrophotometric analysis	53
3.4.4.2 Dynamic light scattering (DLS)	54
3.4.4.3 Fourier transform infrared spectroscopy (FT-IR)	54
3.4.4.4 Transmission electron microscope	55
3.4.4.5 X-Ray diffraction analysis (XRD)	55
3.4.4.6 Atomic force microscopy (AFM)	56
3.4.5 Anti-bacterial efficacy of synthesized nanoparticles	56
3.4.5.1 Minimal inhibitory concentration (MIC) determination of nanoparticles	57
3.4.5.2 Anti-biofilm activity of the tested nanoparticles	58
3.4.5.4 Cell-surface hydrophobicity assay	59

3.4.6 Bacterial identification using 16S rRNA gene sequence analysis	60
3.4.7 Scanning electron microscope (SEM) of C1010 carbon	61
mild steel coupon for biofilm formation in presence of	
nanocomposite polymer	
3.4.8 DNA fragmentation assay	62
3.4.9 Simulation of cooling system	63
3.4.10 Electrochemical measurements impedance	64
3.4.10.1 Electrochemical corrosion measurements	64
3.4.10.2 Procedures used for corrosion inhibition	65
measurement tests	
3.4.10.2.1 Inhibitor stock solutions	65
3.4.10.2.2 Electrochemical cell	65
3.4.10.3. Electrochemical impedance spectroscopy	68
measurements	
3.5 Statistical analysis	71
4 Results and Discussion	72
4 Results and Discussion 4.1 Detection of free chlorine	72 72
4.1 Detection of free chlorine	72
4.1 Detection of free chlorine4.2 Water samples collection, isolation and tentative	72
4.1 Detection of free chlorine4.2 Water samples collection, isolation and tentative identification of bacterial isolates	72 73
 4.1 Detection of free chlorine 4.2 Water samples collection, isolation and tentative identification of bacterial isolates 4.3 Detection of biofilm formation 	72 73 74
 4.1 Detection of free chlorine 4.2 Water samples collection, isolation and tentative identification of bacterial isolates 4.3 Detection of biofilm formation 4.3.1 Qualitative methods congo red agar method (CRA) 4.3.2 Quantitative method tissue culture plate (TCP) 4.3.3 Identification of the most potent biofilm producing 	72 73 74 74
 4.1 Detection of free chlorine 4.2 Water samples collection, isolation and tentative identification of bacterial isolates 4.3 Detection of biofilm formation 4.3.1 Qualitative methods congo red agar method (CRA) 4.3.2 Quantitative method tissue culture plate (TCP) 4.3.3 Identification of the most potent biofilm producing isolates 	72 73 74 74 76 81
 4.1 Detection of free chlorine 4.2 Water samples collection, isolation and tentative identification of bacterial isolates 4.3 Detection of biofilm formation 4.3.1 Qualitative methods congo red agar method (CRA) 4.3.2 Quantitative method tissue culture plate (TCP) 4.3.3 Identification of the most potent biofilm producing isolates 4.3.4 Antibiotic susceptibility test for the most potent 	72 73 74 74 76
 4.1 Detection of free chlorine 4.2 Water samples collection, isolation and tentative identification of bacterial isolates 4.3 Detection of biofilm formation 4.3.1 Qualitative methods congo red agar method (CRA) 4.3.2 Quantitative method tissue culture plate (TCP) 4.3.3 Identification of the most potent biofilm producing isolates 4.3.4 Antibiotic susceptibility test for the most potent biofilm producing isolates 	72 73 74 74 76 81 83
 4.1 Detection of free chlorine 4.2 Water samples collection, isolation and tentative identification of bacterial isolates 4.3 Detection of biofilm formation 4.3.1 Qualitative methods congo red agar method (CRA) 4.3.2 Quantitative method tissue culture plate (TCP) 4.3.3 Identification of the most potent biofilm producing isolates 4.3.4 Antibiotic susceptibility test for the most potent 	72 73 74 74 76 81
 4.1 Detection of free chlorine 4.2 Water samples collection, isolation and tentative identification of bacterial isolates 4.3 Detection of biofilm formation 4.3.1 Qualitative methods congo red agar method (CRA) 4.3.2 Quantitative method tissue culture plate (TCP) 4.3.3 Identification of the most potent biofilm producing isolates 4.3.4 Antibiotic susceptibility test for the most potent biofilm producing isolates 4.3.5 Bio-corrosion ability of the highest biofilm producer 	72 73 74 74 76 81 83

4.4 Green synthesized zinc oxide and copper oxide		
nanoparticles and radiation modification by gamma		
radiation doses		
4.4.1 Characterization of copper oxide nanoparticles	94	
4.4.2 Characterization of zinc oxide nanoparticles	103	
4.4.3 Characterization <i>ex-situ</i> nanocomposite polymer	115	
4.5 Antibacterial activity of the prepared CuO, ZnO	120	
nanoparticles and nanocomposite	123	
4.6 Minimum inhibitory noncentrations (MICs)of the		
prepared ZnO, CuO NPs and nanocomposite		
4.7 Anti-biofilm activity of zinc oxide, copper oxide	125	
nanoparticles and nanocomposite		
4.8 Antibiofilm activity of chlorine along with the	132	
synthesized nanoparticles		
4.9 Bacterial adherence to hydrocarbons, anti-adherence		
activity of nanoparticles		
4.10 Identification of the selected bacterial isolates by 16S		
rRNA gene sequencing		
4.11 Effect of different prepared nanoparticles on DNA	142	
degradation for the most biofilm producer strains		
4.13 Scanning electron microscope (SEM) of biofilm		
formation in presence and absence of nanocomposite		
4.14 Energy dispersion spectrum (EDS)	152	
4.15 Electrochemical corrosion inhibition measurements	153	
4.15.1 Polarization measurements	153	
4.15.2 Electrochemical impedance spectroscopy (EIS)	158	
4.15.3 Adsorption isotherm	163	
4.16 Simulation system for corrosion treatment	165	
5 Conclusion	169	
6 Summary	171	
7 References	175	

List of Figure

No.	Figure name	Page
		no.
Figure 1	Scanning electron micrograph of a staphylococcal biofilm on the inner metal surface	6
Figure 2	Attachment of bacteria to a biotic surface	9
Figure 3	Interactions between microbes, corrosion and environment	17
Figure 4	Different mechanisms of antibacterial activity of nanoparticles	25
Figure 5	Anti-microbial polymer/metal nanoparticles	32
Figure 6	Physical interactions and electrostatic contacts play a role in determining the antimicrobial efficacy of the nanocomposite	38
Figure 7	Simulation system of coolant tower	66
Figure 8	Standard electrochemical cell	67
Figure 9	Voltalab 80 (Tacussel- Radiometer-Analytical PG Z402)	70
Figure 10	Analysis of tissue culture plate method	78
Figure 11	Weight loss/week of C1010 mild stee coupons incubated with Proteus mirabilis (Prot. mirabilis), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus); (b): Corrosion rate (CR) for each bacterial strain	88
Figure12	Scanning electron microscope image of mild steel coupon bio-corrosion a) Control surface of mild steel coupon b) Control surface of mild steel in sterile water sample	89
Figure 13	Scanning electron microscope image of a) biocorrosion on coupon surface by <i>P.</i> aeruginosa 86 and b) biocorrosion formed by <i>P. aeruginosa</i> 86	90
Figure 14	Scanning electron microscope image of a) biofilm on coupon surface by <i>Prot. mirabilis</i>	91