

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

STUDYING OPTIMIZATION OF NONLINEAR FE MODELLING PARAMETERS FOR RC BEAMS WITH CASE STUDY APPLICATION OF LEDGED RC L-SHAPED BEAMS

By

Samuel Hanna Kamel Yaakop

A Thesis submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
STRUCTURAL ENGINEERING

STUDYING OPTIMIZATION OF NONLINEAR FE MODELLING PARAMETERS FOR RC BEAMS WITH CASE STUDY APPLICATION OF LEDGED RC L-SHAPED BEAMS

By

Samuel Hanna Kamel Yaakop

A Thesis submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
STRUCTURAL ENGINEERING

Under the Supervision of

Dr. Hatem H. A. Ibrahim

Prof. Dr. Mourad M. Bakhoum

Professor of Structural Analysis and
Mechanics
Structural Engineering Department
Faculty of Engineering, Cairo University

Assistant Professor
Structural Engineering Department
Faculty of Engineering, Cairo University

STUDYING OPTIMIZATION OF NONLINEAR FE MODELLING PARAMETERS FOR RC BEAMS WITH CASE STUDY APPLICATION OF LEDGED RC L-SHAPED BEAMS

By Samuel Hanna Kamel Yaakop

A Thesis submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
STRUCTURAL ENGINEERING

Approved by the Examining Committee

Prof. Dr. Mourad M. Bakhoum, Thesis Main Advisor.

Professor of Structural analysis and Mechanics, Faculty of Engineering, Cairo University.

Prof. Dr., Adel Galal El-Attar, Internal Examiner.

Professor of concrete structures, Faculty of Engineering, Cairo University.

Prof. Dr., Mohamed Noor El- Din Fayed, External Examiner.

Professor of structural analysis and mechanics, Faculty of Engineering, Ain shams University.

Engineer: Samuel Hanna Kamel Yaakop

Date of Birth: 05/02/1990 **Nationality:** Egyptian

E-mail: samuelhanna93@gmail.com

Phone: 01285894399

Address: 52 abdel ghany hassan street,

el Talbia, El Haram, Giza, Egypt.

Registration Date: 01/3/2013
Awarding Date:/.2020
Degree: Master of Science
Department: Structural Engineering

Supervisors: Prof. Dr. Mourad M. Bakhoum

Dr. Hatem H. A. Ibrahim

Examiners: Prof. Dr. Mohamed Noor El- Din Fayed (External examiner)

Professor at Ain shams University.

Prof. Dr. Adel Galal El-Attar (Internal examiner)
Prof. Dr. Mourad M. Bakhoum (Thesis main advisor)

Title of Thesis:

STUDYING OPTIMIZATION OF NONLINEAR FE MODELLING PARAMETERS FOR RC BEAMS WITH CASE STUDY APPLICATION OF LEDGED RC L-SHAPED BEAMS.

Key Words: Nonlinear Analysis; Optimization; Mesh Size; Verification; Ledge

Beam.

Summary:

In this research a simple reinforced concrete beam was modelled in form of 2D and 3D models in nonlinear FE analysis using a commercial nonlinear software package (ATENA) focusing on the following three parameters: the effect of mesh size, element type and reinforcement form/modelling (smeared or discrete). After establishing the most suitable of these parameters to use in simulation in the nonlinear analysis of RC structures, a verification was made using published results of nine RC simply supported beams which their results of load deflection curves or moment—deflection curves were found in the literature from tests. The results of the studied beams gave good agreement with the published results based on the findings from the parameters and assumptions that are considered in the thesis.

After this verification of the previous parameters, a case study application on L-shaped RC (ledged) beams was conducted with a view to enhance the shear ledge capacity by investigating reinforcement details without changing the ledge beam geometry.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name:	Date:
Signature:	

ACKNOWLEDGMENT

Foremost, I would first like to thank my thesis main advisor Professor Dr. Mourad M. Bakhoum, Faculty of Engineering, Cairo University for his continuous support in my study and research ,creative vision, timely advice, his patience, motivation, enthusiasm, immense knowledge, precise and valuable comments, the highly cost of the program used in my research, patience during the supervision of this thesis and the enormous effort he made to revise this document, His guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my M.A study.

My second advisor, Dr. Hatem H. Ali, Faculty of Engineering, Cairo University, I would like to thank him very much because he played a vital role in the collection of this research and helped me by many ideas in the research and also due to his guidance, patience, his office hours.

I must express my very profound gratitude to my parents and my sisters for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis. This accomplishment would not have been possible without them. Thank you.

Finally, this work is dedicated to God, who gave me encouragement, strength, and confidence when I need it the most.

Eng. Samuel Hanna

TABLE OF CONTENTS

LIST OF TABLES	vi
LIST OF FIGURES	ix
NOMENCLATURE	xviii
ABSTRACT	xxi
CHAPTER (1): INTRODUCTION	1
1.1 GENERAL 1.2 OBJECTIVES 1.3 SCOPE OF THE WORK 1.4 OUTLINE OF THE THESIS	2
CHAPTER (2): LITERATURE REVIEW	5
2.1 GENERAL 2.2 STRAIN DISTRIBUTION 2.3 MESH SIZE EFFECT 2.4 STUDIED SHALLOW SIMPLE RC BEAMS 2.5 LEDGED CONCRETE BEAMS.	5 10
CHAPTER (3): FE MODELLING OF THE RC BEAM	
3.1 INTRODUCTION.	
3.2 FINITE ELEMENTS IN ATENA	
3.2.1 2D AND 3D TRUSS ELEMENTS	
3.2.2 PLANE QUADRILATERAL ELEMENTS	
3.2.3 PLANE TRIANGULAR ELEMENTS	
3.2.4 3D SOLID ELEMENTS.	
3.2.5 SPRING ELEMENT.	
3.2.6 EXTERNAL CABLE.	
3.3 CONSTITUTIVE MODELS.	
3.3.1 CONSTITUTIVE MODEL SBETA (CCSBETAMATERIAL)	
3.3.1.1 CONCEPT OF CONSTITUTIVE MODEL SBETA (CCSBETAMATERIAL)	
3.3.1.2 STRESS-STRAIN RELATIONS FOR CONCRETE	
3.3.1.2.1 EQUIVALENT UNIAXIAL LAW	
3.3.1.2.2 TENSION BEFORE CRACKING	
3.3.1.2.3 TENSION AFTER CRACKING.	
3.3.1.2.4 BEFORE COMPRESSION PEAK STRESS	
3.3.1.2.5 AFTER COMPRESSION PEAK STRESS	
3.3.1.3 BEHAVIOR OF CRACKED CONCRETE	
3.3.1.3.1 CRACKED SECTION DESCRIPTION 3.3.1.3.2 MODELLING OF CRACKING IN CONCRETE	
3.3.1.3.3 SHEAR STRESS AND STIFFNESS IN CRACKED CONCRETE	
3.3.1.3.4 COMPRESSIVE STRENGTH OF THE CRACKED CONCRETE	
3.3.1.3.5 TENSION-STIFFENING of THE CRACKED CONCRETE	
3.3.1.3.6 MATERIAL STIFFNESS MATRICES	
J.J. L. T. AKAIYID LUKO OF CONOTH UTLY DIVIODEL	4 /

3.3.2 FRACTURE–PLASTICCONSTITUTIVE MODEL	
(CC3DNONLINCEMENTITIOUS2) WHICH USED IN THE 3D MODE	LS
ANALYSIS	48
3.3.2.1 CONCEPT OF CONSTITUTIVE MODEL (CC3DNONLINCEMENT)	NTITIOUS2)48
3.3.2.2 MATERIAL MODEL FORMULATION	
3.3.2.3 CONCRETE CRACKING MODEL BY RANKINE CRITERIA	
3.3.2.4 CONCRETE CRUSHING PLASTICITY MODEL	
3.3.2.5 COMBINATION OF PLASTICITY AND FRACTURE MODEL	
3.3.2.6 TENSION STIFFENING	
3.3.2.7 FIXED OR ROTATED CRACKS	
	_
3.4 SOLUTION OF NONLINEAR EQUATIONS	
3.4.1 GENERAL	
3.4.2 FULL NEWTON-RAPHSON METHOD	
3.4.3 ARC-LENGTH METHOD	
3.5 INTERACTIONS	
3.5.1 THE CONNECTION BETWEEN THE CONCRETE AND THE ST	ΓEEL PLAT58
3.5.2 THE CONNECTION BETWEEN THE CONCRETE AND THE	
REINFORCEMENT	
3.6 MONITORING POINTS	59
3.7 LOADING CONDITIONS	59
CHAPTER (4): OPTIMIZATION OF FINITE ELEMENT	MODELLING
	MODELLING
DADAMETEDO	(0
PARAMETERS	60
PARAMETERS	
	60
4.1 INTRODUCTION	60
4.1 INTRODUCTION	60 60
4.1 INTRODUCTION	
4.1 INTRODUCTION	
4.1 INTRODUCTION 4.2 REINFORCED CONCRETE SIMPLE BEAM DATA	
4.1 INTRODUCTION	
4.1 INTRODUCTION	
4.1 INTRODUCTION 4.2 REINFORCED CONCRETE SIMPLE BEAM DATA 4.2.1 GEOMETRY AND MATERIAL PARAMETERS 4.2.2 FEM OF THE BEAMS 4.2.3 THE MESH SIZES AND ELEMENT TYPES OF THE MODELED 4.3 RESULTS AND DISCUSSIONS 4.3.1 MODE FAILURES 4.3.2 LOAD DEFLECTION CURVES 4.3.3 STRESSES AND STRAINS DISTRIBUTIONS AT THE MID SPAN	
4.1 INTRODUCTION 4.2 REINFORCED CONCRETE SIMPLE BEAM DATA 4.2.1 GEOMETRY AND MATERIAL PARAMETERS 4.2.2 FEM OF THE BEAMS 4.2.3 THE MESH SIZES AND ELEMENT TYPES OF THE MODELED 4.3 RESULTS AND DISCUSSIONS 4.3.1 MODE FAILURES 4.3.2 LOAD DEFLECTION CURVES 4.3.3 STRESSES AND STRAINS DISTRIBUTIONS AT THE MID SPANTHE 25 MODELED BEAMS ALONG THE BEAM HEIGHT	
4.1 INTRODUCTION 4.2 REINFORCED CONCRETE SIMPLE BEAM DATA 4.2.1 GEOMETRY AND MATERIAL PARAMETERS 4.2.2 FEM OF THE BEAMS 4.2.3 THE MESH SIZES AND ELEMENT TYPES OF THE MODELED 4.3 RESULTS AND DISCUSSIONS 4.3.1 MODE FAILURES 4.3.2 LOAD DEFLECTION CURVES 4.3.3 STRESSES AND STRAINS DISTRIBUTIONS AT THE MID SPAN	
4.1 INTRODUCTION 4.2 REINFORCED CONCRETE SIMPLE BEAM DATA 4.2.1 GEOMETRY AND MATERIAL PARAMETERS 4.2.2 FEM OF THE BEAMS 4.2.3 THE MESH SIZES AND ELEMENT TYPES OF THE MODELED 4.3 RESULTS AND DISCUSSIONS 4.3.1 MODE FAILURES 4.3.2 LOAD DEFLECTION CURVES 4.3.3 STRESSES AND STRAINS DISTRIBUTIONS AT THE MID SPAN THE 25 MODELED BEAMS ALONG THE BEAM HEIGHT 4.3.3.1 GROUP 1 WITH NINETEENTH 2D MODELS FROM MODEL 18 4.3.3.2 GROUP 2 WITH SIX 3D MODELS FROM MODEL 18 TO 23	
4.1 INTRODUCTION 4.2 REINFORCED CONCRETE SIMPLE BEAM DATA. 4.2.1 GEOMETRY AND MATERIAL PARAMETERS. 4.2.2 FEM OF THE BEAMS. 4.2.3 THE MESH SIZES AND ELEMENT TYPES OF THE MODELED 4.3 RESULTS AND DISCUSSIONS. 4.3.1 MODE FAILURES. 4.3.2 LOAD DEFLECTION CURVES. 4.3.3 STRESSES AND STRAINS DISTRIBUTIONS AT THE MID SPANTHE 25 MODELED BEAMS ALONG THE BEAM HEIGHT. 4.3.3.1 GROUP 1 WITH NINETEENTH 2D MODELS FROM MODEL 18 TO 23 4.4 Detailed hand calculations of reactions and deflection at different set.	
4.1 INTRODUCTION 4.2 REINFORCED CONCRETE SIMPLE BEAM DATA. 4.2.1 GEOMETRY AND MATERIAL PARAMETERS. 4.2.2 FEM OF THE BEAMS. 4.2.3 THE MESH SIZES AND ELEMENT TYPES OF THE MODELED 4.3 RESULTS AND DISCUSSIONS. 4.3.1 MODE FAILURES. 4.3.2 LOAD DEFLECTION CURVES. 4.3.3 STRESSES AND STRAINS DISTRIBUTIONS AT THE MID SPANTHE 25 MODELED BEAMS ALONG THE BEAM HEIGHT. 4.3.3.1 GROUP 1 WITH NINETEENTH 2D MODELS FROM MODEL 18 TO 23 4.4 Detailed hand calculations of reactions and deflection at different stoff the proposed RC beam according to Egyptian Code	
4.1 INTRODUCTION	
4.1 INTRODUCTION	
4.1 INTRODUCTION 4.2 REINFORCED CONCRETE SIMPLE BEAM DATA	
4.2 REINFORCED CONCRETE SIMPLE BEAM DATA	
4.1 INTRODUCTION 4.2 REINFORCED CONCRETE SIMPLE BEAM DATA. 4.2.1 GEOMETRY AND MATERIAL PARAMETERS. 4.2.2 FEM OF THE BEAMS. 4.2.3 THE MESH SIZES AND ELEMENT TYPES OF THE MODELED 4.3 RESULTS AND DISCUSSIONS. 4.3.1 MODE FAILURES. 4.3.2 LOAD DEFLECTION CURVES. 4.3.3 STRESSES AND STRAINS DISTRIBUTIONS AT THE MID SPAN THE 25 MODELED BEAMS ALONG THE BEAM HEIGHT. 4.3.3.1 GROUP 1 WITH NINETEENTH 2D MODELS FROM MODEL 18 TO 23 4.4 Detailed hand calculations of reactions and deflection at different st of the proposed RC beam according to Egyptian Code (ECP). 4.4.1 DESIGN OF SECTION AT THE MID SPAN ACCORDING TO E PROPOSED RC BEAM. 4.4.2 CALCULATION OF REACTION AT THE THREE STAGES OF THE PROPOSED RC BEAM.	
4.1 INTRODUCTION 4.2 REINFORCED CONCRETE SIMPLE BEAM DATA	

CHAPTER: (5) VERIFICATION OF PARAMETRIC STUDY RESULTS NON-LINEAR FEM	
5.1 INTRODUCTION	134
5.2 THE NINE REINFORCED CONCRETE SIMPLE BEAMS DATA	
5.2.1 GEOMETRY AND MATERIAL PARAMETERS OF THE NINE BEAMS.	
5.2.2 FEM OF THE BEAMS	
5.3 RESULTS AND DISCUSSION	
5.3.1 RESULTS OF LOAD-DEFLECTION CURVES, BEAM CAPACITIES,	
PATTERNS AND MODES OF FAILURE OF THE NINE BEAMS	
5.3.2 RESULTS OF STRAINS AND STRESSES OF THE STUDIEI	
BEAMS	
CHAPTER: (6) CASE STUDTY (LEDGE BEAMS)	207
6.1 INTRODUCTION	207
6.1.1 (Lucier et al.)	208
6.1.2 SPECIMEN #2, Klein, 1986a	208
6.1.3 NAFADI, 2016	208
6.1.3.1 SP16 LEDGE BEAM, Lucier et al., 2011a	208
6.1.3.2 SP14, Lucier et al., 2011a	209
6.1.3.3 SPECIMEN #2, Klein, 1986a	
6.2 LEDGE BEAMS STUDIED MODELS	213
6.2.1 INPUT DATA OF THE SIX LEDGE BEAM VERIFICATION MODELS	213
6.2.2 FINITE ELEMENT MODELLING FOR THE STUDIED BEAMS	
6.2.3 CALIBRATION OF THE STUDIED FE MODELS	225
6.3 THE PARAMETRIC STUDY TO ENHANCE THE LEDGE	SHEAR
CAPACITY	229
6.4 RESULTS AND DISCUSSIONS.	233
CHAPTER (7): CONCLUSIONS AND RECOMMENDATIONS FOR F	
7.1 SUMMARY	236
7.2 CONCLUSIONS	
7.3 RECOMMENDATIONS FUTURE WORK	
REFERENCES	
LIST OF APPENDICES	241
APPENDIX (A)Appen	dix A-1
APPENDIX (B)Appen	ıdix B-1
APPENDIX (C)Appen	dix C-1
APPENDIX (D)Appen	dix D-1
APPENDIX (E)Appen	ıdix E-1

LIST OF TABLES

Talla 2 1. The sectors of the constants A and W	2.4
Table 3.1: The values of the constants A and K	
Table 3.2: Parameters of concrete SBETA material	
Table 4.1: SBETA material parameters of the studied beams	
Table 4.2: Cementitious concrete material parameters	
Table 4.3: Reinforcement material parameters of the studied beams for the 2D and	
models	
Table 4.4: Steel plate material parameters of the studied beam for the 2D and	
models	
Table 4.5: The mesh sizes and element types of the 25 beams	
Table 4.6: Results of total load and deflection of the 25 models compared to ECP	
Table 4.7: Strains and stresses distributions at mid span sections of the 2D models	
Table 4.8: Strains and stresses distributions at mid span sections of the 3D models	
Table 4.9: Comparison of reactions of the 25 models by ATENA program and the	
in cracking stage	
Table 4.10: Comparison of reactions of the 25 models by ATENA program and the	ECP
in working stage	
Table 4.11: Comparison of maximum reaction by ATENA of the 25 models and the b	eam
capacity of ECP in the ultimate limit state	.133
Table 5.1: Beams' name and their references	.134
Table 5.2: Cementitious concrete material parameters for A1&B1 beams	.140
Table 5.3: Cementitious concrete material parameters for A. Parghi et. al 1 beam	.140
Table 5.4: Cementitious concrete material parameters for N. Dash F1 beam	.141
Table 5.5: Cementitious concrete material parameters for RN-F-10 beam	
Table 5.6: Cementitious concrete material parameters for RN-F-12 beam	.142
Table 5.7: Cementitious concrete material parameters for RN-F-16 beam	
Table 5.8: Cementitious concrete material parameters for ARPN beam	
Table 5.9: Cementitious concrete material parameters for B5 beam	
Table 5.10: Reinforcement material parameters of the studied beams (A1&B1)	
Table 5.11: Reinforcement material parameters of the studied beam (A. Parghi et	
1)	
Table 5.12: Reinforcement material parameters of the studied beam (N. Dash F1)	
Table 5.13: Reinforcement material parameters of the studied beam (RN-F-10)	
Table 5.14: Reinforcement material parameters of the studied beam (RN-F-12)	
Table 5.15: Reinforcement material parameters of the studied beam (RN-F-16)	
Table 5.16: Reinforcement material parameters of the studied beam (ARPN)	
Table 5.17: Reinforcement material parameters of the studied beam (B5)	
Table 5.18: Steel plate material parameters of the studied nine beams	
Table 5.19: The parameters used in the analysis in FE models of the nine beams	
Table 5.20: Comparison between ATENA results, ECP results and test results or	
studied beams that have test results.	
Table 5.21: The stages from (a) to (g) with the corresponding steps, mid span deflect and moment of A1 beam	
Table 5.22: The stages from (a) to (g) with the corresponding steps, mid span deflected moment of P1 hours.	
and moment of B1 beam. Table 5.22. The stores from (a) to (a) with the corresponding store, mid one defle	
Table 5.23: The stages from (a) to (g) with the corresponding steps, mid span deflect and total lead of A. Parabi et al. I have	
and total load of A. Parghi et. al 1 beam	.100

Table 5.24: The stages from (a) to (g) with the corresponding steps, mid span deflection
and total load of N. Dash F1 beam
Table 5.25: The stages from (a) to (g) with the corresponding steps, mid span deflection
and total load of RN-F-10 beam168
Table 5.26: The stages from (a) to (g) with the corresponding steps, mid span deflection
and total load of RN-F-12 beam169
Table 5.27: The stages from (a) to (g) with the corresponding steps, mid span deflection
and total load of RN-F-16 beam170
Table 5.28: The stages from (a) to (g) with the corresponding steps, mid span deflection
and 0.5x total load of ARPN beam
Table 5.29: The stages from (a) to (g) with the corresponding steps, mid span deflection
and total load of B5 beam172
Table 5.30: Strains and stresses distributions for A1 beam at mid span section173
Table 5.31: Strains and stresses distributions for B1 beam at mid span section177
Table 5.32: Strains and stresses distributions for A. Parghi et. al 1 beam at mid span
section
Table 5.33: Strains and stresses distributions for N. Dash F1 beam at mid span
section
Table 5.34: Strains and stresses distributions for RN-F-10 beam at mid span
section
Table 5.35: Strains and stresses distributions for RN-F-12 beam at mid span section192
Table 5.36: Strains and stresses distributions for RN-F-16 beam at mid span section196
Table 5.37: Strains and stresses distributions for ARPN beam at mid span section199
•
Table 5.38: Strains and stresses distributions for B5 beam at mid span section202
Table 6.1: Test Results at the mid span of twenty-one short span beams
Table 6.2: Mid-span Tests in Short Span Beams
Table 6.3: The concrete material parameters of the ledge beams (RS1, RS5, RS6, RS8,
RS9)
Table 6.4: The concrete material parameters of the ledge beam RS3
Table 6.5: Material properties of the reinforcement of the ledge beams RS1, RS3, RS5,
RS 6, RS 8 and RS 9
Table 6.6: The steel plate material parameters of the studied six ledge beam RS1, RS3,
RS5, RS 6, RS 8 and RS 9224
Table 6.7: Comparison of the ledge beams capacities between the studied models,
ATENA models by Nafadi and the measured capacities
Table 6.8: Shear ledge beam capacities of RS5
Table 6.9: Shear ledge beam capacities of RS8
Table B1: Numerical Parameters of the beam of chapter 4Appendix B-2
Table B2: Comparison of reactions and deflection of the 25 models by ATENA program
and the ECP in cracking load, working load and maximum load by ATENA refer to tables
4.9, 4.10, and 4.11
Table B3: The mesh sizes, element types and reinforcement forms of the 25 beams refer
to table 4.5 Appendix B-4
Table B4: Brief results of models 21, 22, 23 compared to the results of model 9 at stages
b,c and fAppendix B-5
Table B5: Brief results of stresses and strains of models 21, 22, 23 at y=0.0 (at the face
of the beam) compared to the results at y=0.03 (at section of steel bar) at stages b,c and
fAppendix B-6

Table C1:	Brief descri	ption of	the nine	e beams	and the	ir Ioad o	r mome	ent defle	ection (curves
refer to	figures	5.1	to 5.7	7, 5.1	0 to	5.15	and	5.42	to	5.50:
	A1 beam st							A	ppendi	ix C-2
Table C2:	A1 beam st	rains an	d stresse	es distri	bution a	t stages	(a,b,c,c)	d,e,f,g)	refer to	o table
Table C3:	B1 beam st	rains an	d stresse	es distri	bution a	t stages	(a,b,c,c)	d,e,f,g) 1	refer to	o table
5.31:								A	ppend	ix C-4
	A. Parghi et									
refer to tal	ole 5.32:							Ap	pendix	x C-5
Table C5:	N. Dash F1	beam s	trains ar	nd stress	es distri	bution a	it stage:	s (a,b,c,	d,e,f,g) refer
to table 5.	33:							A	ppendi	ix C-6
Table C6:	RN-F-10 be	am stra	ins and	stresses	distribu	tion at s	tages (a	a,b,c,d,e	e,f,g) r	efer to
Table C7:	RN-F-12 be	am stra	ins and	stresses	distribu	tion at s	tages (a	a,b,c,d,e	e,f,g) r	efer to
table 5.35:	 RN-F-16 be							A	ppend	ix C-8
Table C8:	RN-F-16 be	am stra	ins and	stresses	distribu	tion at s	tages (a	a,b,c,d,e	e,f,g) r	efer to
table 5.36:								A	ppend	ix C-9
	ARPN bear						_		_	
table 5.37:								Ap	pendix	C-10
	: B5 beam s									
	Brief resul									
different s	tages of load	ding by	ECP203	3				A ₁	pendi	x D-3