

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

NUMERICAL STUDY OF SMOKE MOVEMENT AND BEHAVIOUR AT AUDITORIUM HALL

By

Eng. Islam Gaber Mohamed Gaber

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

In MECHANICAL POWER ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020

NUMERICAL STUDY OF SMOKE MOVEMENT AND BEHAVIOUR AT AUDITORIUM HALL

By

Eng. Islam Gaber Mohamed Gaber

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

In

MECHANICAL POWER ENGINEERING

Under Supervision of

Prof. Dr. Essam E. Khalil

Professor Mechanical Power
Department Faculty of
Engineering
Cairo University

Dr. Gamal A. El Hariry

Associate Professor Mechanical Power
Department Faculty of
Engineering
Cairo University

NUMERICAL STUDY OF SMOKE MOVEMENT AND BEHAVIOUR AT AUDITORIUM HALL

By

Eng. Islam Gaber Mohamed Gaber

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

MECHANICAL POWER ENGINEERING

Approved by the Examining Committee

Prof. Dr. Essam E. Khalil

Thesis Main Advisor

Professor In Mechanical Power Engineering Department Faculty of Engineering, Cairo University

Prof. Dr. Mustafa Abdul-Hameed Rizk

Internal Examiner

Professor In Mechanical Power Engineering Department Faculty of Engineering, Cairo University

Prof. Dr. Mohammed Fayek Abed Rabbo

External Examiner

Professor, Mechanical Power Engineering Department Faculty of Engineering at Shoubra, Benha University

> FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020

Engineer: Islam Gaber Mohamed Gaber

Date of Birth: 25/05/1971 Nationality: Egyptian

E-mail: islamgaber70@hotmail.com

Phone: 01001489441

Address: 12/8 Zahraa El Maadi – Cairo

Registration Date: / /2016 Awarding Date: / /2020

Degree: Master of Science

Department: Mechanical Power Engineering

Supervisors: Prof. Dr. Essam E. Khalil Hassan Khalil

Dr. Gamal Abd Elmoneim El Hariry

Examiners: Prof. Dr. Essam E. Khalil Hassan Khalil (Thesis main advisor)

Professor In Mechanical Power Engineering Department

Faculty of Engineering, Cairo University

Prof. Dr. Mustafa Abdul-Hameed Rezk (Internal examiner)

Professor In Mechanical Power Engineering Department

Faculty of Engineering, Cairo University

Prof. Dr. Mohammed Fayek Abed Rabbo (External examiner) Professor, Mechanical Power Engineering Department at Shoubra,

Benha University

Title of Thesis

NUMERICAL STUDY OF SMOKE MOVEMENT AND BEHAVIOUR AT AUDITORIUM

Key Words: Smoke- CFD – Fire – temperature distribution – Egress

Summary: This research shows the approach for the smoke layer interface at particular distance above the highest walking surface in an auditorium, The associated smoke exhaust capacity required to provide a large clear height is substantial. Further concerns about the make-up air requirements, especially given that the maximum velocity of 6.0 m/s for the make-up air in case utilizing mechanical ventilation and 4 m/s in case none forced ventilation as in this study utilizing ANSYS Fluent V.18.2 CFD software. Based on that this thesis will discuss how much smoke air should be extracted to enable people escaping from that auditorium in safe way.

DISCLAIMER

I hereby declare that this thesis is my own original work and that no part of it has
been
Submitted for a degree of qualification at any other university or institute.
I further declare that I have appropriately acknowledged all sources used and have
cited them in the references section.
Name: Date:
Signature:

ACKNOWLDGEMENT

I hereby would like to express my deep gratitude and thanks to **Prof.Dr. Essam E. Khalil, Dr. Gamal A El Hariry** for their support, continuous encouragement and distinctive supervision throughout the course of this work. They helped providing me with up to date technical references that are of great help in the present work.

In addition, I would like to express my thanks and gratitude to my family and friends for their great and continuous help and support they provided me to finish this work in final form

In addition, I need to thank my colleagues in mechanical power engineering department, Cairo University for their support and help.

TABLE OF CONTENTS

CHAPTER 1 Introduction	1
1.1 Tenability Criteria	2
1.1.1 Standard No. (1) – Smoke layer 2 m above the floor	2
1.1.2 Standard No. (2) - Smoke layer below 2 m	3
1.2 Design Goals.	3
1.2.1 Evacuation Analysis Objectives	3
1.2.2 Design Criteria.	4
CHAPTER 2 Literature Review	5
2.0 Introduction.	5
2.1 Literature Review Classifications	5
2.1.1 Design Limitations.	6
2.1.2 Alarm Literature Review.	6
2.1.3 Evacuation Plan Literature Review.	
2.2 Objectives for the CFD Analysis	7
2.2.1 Occupant behavior with the building	
CHAPTER 3 Theoretical Calculations for Evacuation Time	12
3.0 Introduction.	
3.1 Limitations and Assumptions.	12
3.2 The evacuation pattern	14
3.2.1 Exit flows through zone 1, Final exit (1)	14
3.2.2 Final Exit (1)	15
3.2.3 Correlation between human behavior and fire	16
3.2.5 Evaluation of Required Safe Egress Time (RSET)	17
CHAPTER 4 Theory and methodology	19
4.1 Approach for smoke management in the Auditorium	19
4.2 Numerical Fire and Smoke Analysis.	19
4.2.1 Design Fire	.19
4.3 Calculations of Smoke Layer	20
4.3.1 General criteria.	20
4.3.2 Rate of Smoke Mass Production.	23
CHAPTER5 Fire Modeled and Visibility Run Output	28
5.0 Introduction	28
5.1 Fire Modeled	28
5.2 Visibility	29
5.3 Run Results	30
CHAPTER 6 Computational Fluid Dynamics (CFD)	36
6.0 Introduction	36
6.1 Governing equations	
6.2 Derivation of Continuity equation	37
6.3 Derivation of momentum equation	38
6.4 Newtonian Fluids	
6.5 Stocks Hypothesis.	

6.6	Derivation of energy equation	42
6.7	The k-ε turbulence Pattern	
6.8	Inputs of Ansys CFD program	43
6.8.1	Energy and Model	43
6.8.2	Material and Mixtures of fluids	43
6.8.3	Boundary conditions	44
6.8.3.1	Wall Thermal data	44
6.8.3.2	Wall momentum data	44
6.8.3.3	Fire Mass flow inlet momentum	44
6.8.3.4	Fire Mass flow inlet thermal	45
6.8.3.5	Door Pressure inlet momentum	45
6.8.3.6	Door Pressure inlet thermal	45
6.8.3.7	Exhaust momentum	45
6.4	Mesh independence study	.45
6.4.1	Introduction	45
6.4.2	Numerical uncertainty (Unum)	45
6.4.3	Input parameter uncertainty analysis	46
	TER 7 CFD Run Output	41
7.1	Introduction	41
7.2	Case 1, Simulation Results for extract flow rate of 28.8 m3/s and makeu	p speed
	rough doors	
42		
	Notes on Temperature Distribution and Contours for 2 m/s make	_
•	y	47
	se 2, Simulation Results for extract flow rate of 28.8 m3/s and makeup spee	
_	1 doors	50
	emperature distribution	50
	otes on Temperature & Velocity Distribution for 4m/s make up air velocity	53 53
	mparison results between 2m/s and 4m/s make up air velocity merical Validation	
	fumerical Validation for case No. (1), Makeup air velocity at 2 m/s	
	fumerical Validation for case No. (1), Makeup air velocity at 4 m/s	
7.3.2 IV	unierical varidation for case No. (1), Makeup an velocity at 4 m/s	37
СНАР	TER 8 Discussions and Conclusions	58
СНАР	TER 9 Future Works	59
DEED	FNCFS	60

LIST OF FIGURES

Figure 1.1: General Auditorium View.	1
Figure 1.2: Simulation of escape in case no tenability / visibility is achieved.	2
Figure 2.1: Plan layout drawing for the auditorium	8
Figure 2.3: Behavior of people in case of escape	10
Figure 3.1 Geometric model for auditorium	11
Figure 3.2: Recommended Evacuation time versus smoke layer height.	13
Figure 3.3: Egress and exit final locations.	14
Figure 4.1: Fire Simulation	21
Figure 4.2: flame height and fire size with respect to building height	21
Figure 4.3: Time Squared Fire versus Heat Release Rate (HRR)	23
Figure 4.4: Smoke Production Rate	26
Figure 4.5: Recommended location for smoke extraction and mechanical	
Make-up air.	26
Figure 4.6: Recommended location for smoke extraction and Door makeup air	
Extracted from ASHRAE Chapter 7 (fire and Smoke extraction)	27
Figure 5.1: Simulation test for smoke movement at first case	29
Figure 5.2: Mass exhaust rate and heat release vs. CO concentration	
Figure 5.3: Run results (visibility plans)	
Figure 5.3.1: Visibility Plan (After 30 seconds)	31
Figure 5.3.2: Visibility Plan (After 60 seconds)	32
Figure 5.3.3: Visibility Plan (After 100 seconds)	33
Figure 5.3.4: Visibility Plan (After 150 seconds)	34
Figure 5.3.5: Visibility Plan (After 200 seconds)	35
Figure 5.3.6: Visibility Plan (After 400 seconds)	36
Figure 7.1: Fire Simulation before any fire suppression system operates	47
Figure 7.2.1: Fire Start	48
Figure 7.2.2. Fire Propagation	50
Figure 7.2.3: Fire Propagation at Full Auditorium volume View	51
Figure 7.2.4: Temperature Distribution in sectional view	53
Figure 7.2.4.1: Full fire and temperature distribution in the auditorium	5 2
After 300 seconds (5 minutes)	53
Figure 7.2.4.2: Sectional view for velocity distribution in the auditorium	<i>E</i> 1
After 300 seconds (5 minutes) Figure 7.2.4.3: Sectional view for velocity distribution in the auditorium	54
After 300 seconds (5 minutes	54
Figure 7.2.4.4: Full Auditorium Velocity Distribution	55
Figure 7.2.4.5: Velocity profile across symmetrical axis	55
Figure 7.3.1.1 Sectional View for Temperature Distribution	33
and contours at makeup speed 4m/s through doors	56
Figure 7.3.1.2: Full View for Temperature Distribution and contours	30
	56
at makeup speed 4m/s through doors	57
Figure 7.3.1.3: Velocity Distribution and contours at makeup velocity of 4 m/s	
Figure 7.3.1.4: Velocity Distribution and contours at makeup velocity of 4 m/s	57
Figure 7.4.1: Sectional View for the auditorium at 2 m/s Makeup air velocity	59
Figure 7.4.2: Sectional View for the auditorium at 4 m/s Makeup air velocity	59
Figure 7.4.3: Full View at 2 m/s Makeup air velocity	60
Figure 7.4.4: Full View at 4 m/s Makeup air velocity	60
Figure 7.4.5: Velocity Distribution at Makeup air velocity 2 m/s.	61

_	6: Velocity Distribution at Makeup air velocity 4 m/s 7: Full View Velocity Distribution at Makeup air velocity 2 m/s.	61 62
Figure 7.4.	8: Full View Velocity Distribution at Makeup air velocity 4 m/s.	62
Figure 7.5.1: Smoke Spread in the plat form after a fire Figure .7.5.2 the curve of the makeup air Velocity at the stair against time		
list of Tab	les :	
Table 1.1:	Tenability parameters (NFPA 130)	3
Table 1.2:	Illustrative firefighter tenability conditions	4
Table 3.1:	Total calculated required time needed for occupants to	
	Egress from auditorium hall.	18
Table 3.2:	Comparison between different researches' results with this	18
Table 4.1.	Paper. Input data for ample systemation calculations	21
Table 4.1:	Input data for smoke extraction calculations.	
Table 4.2:	Classification of building area- providing fuel with growth Time.	23
Table 4.3:	Typical fire sizes for sprinklered buildings.	24
Table 5.1:	Typical fuel that represents a large scope of estimation of	29
	Different parameters	-
Table 6.1:	Heat release rate from chairs (NFPA 92B)	39

Nomenclature

Symbol	Description
a	Constant
C	Solid material specific heat
C	Constant pressure specific heat
D	Density Persons/m2
D	Diffusion coefficient, Dilution parameter
F	External force vector (excluding gravity)
F_{c}	External force vector (excluding gravity)
F_s	Specific flow Persons per seconds per meter of effective width (Persons/seconds/m of effective width)
F_{sm}	Maximum specific flow Persons per seconds per meter of effective width
G	Acceleration of gravity
Н	Acceleration of gravity
I	Radiation intensity
I	Radiation black body intensity
k	Thermal conductivity; suppression decay factor
K	Constant
Kg	Grad factor
M	Mass production rate of species a by evaporating droplets/particles
m,	Fuel mass flux
P	Population of the assembly area users
Pr	Prandtl number
Q	Total heat release rate Kw
q	Convective flux to a solid surface Kw
Q*	Convective flux to a solid surface Kw
R	Universal gas constant
R	Riser (for stairway) Meters (m) and millimeters (mm)
Re	Riser (for stairway) Meters (m) and millimeters (mm)
S	Riser (for stairway) Meters (m) and millimeters (mm)
S	Visibility, m
S	Speed meters per second (m/s)
T	Thread (for stairway) Meters (m) and millimeters (mm)
t	Temperature °C
T ₀	Ambient temperature
td t	time to detection from fire initiation (minutes)
tpm t	time to detection from fire initiation (minutes)
t _t	time to detection from fire initiation (minutes)
$egin{array}{c} t_{ m u} & & & \\ W & & & & \end{array}$	time to untenable conditions (minutes) Mologular weight of the gas mixture
W	Molecular weight of the gas Species
W	Molecular weight of the gas Species
W We	Width Meters (m) Effective width Meters (m)
vv e	Effective width Meters (m)

(x,y,z) Position vector

 ΔH Heat of combustion kJ/kg

GREEK LETTERS

α Thermal diffusivity mm²/s

δ Delta function Γ Diffusivity ρ Density, kg/m³

E Turbulence dissipation rate

Φ Relative humidityτ Shear Stress, Pa

ψ Gaussian random number
 μ Dynamic viscosity, N.s/m²
 ν Kinematic viscosity, m²/s

ω Vorticity

κ Von Kármán constant

ε Emissivity

ABBREVIATIONS

Two-dimensional configuration
 Three-dimensional configuration
 AJV Authority having jurisdiction
 ASET Available safe egress time

ASHRAE American Society of Heating Ventilation and Air Conditioning

Engineers

CFD Computational Fluid Dynamics under ANSYS V.18.2

HVAC Heating, Ventilation and Air Conditioning

NFPA National Fire Protection Association.

p Pressure

Ppm Population of the assembly area users

RSET Required safe egress time

SFPE SFPE, Society of Fire Protection Engineering, Fire and smoke

Handbook. 5 th Edition

T Temperature V Velocity