

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

Effect of Different Bleaching Protocols on Flexural Strength and Surface Hardness of Two Ceramic Materials (In Vitro Study)

Thesis submitted to

Faculty of Dentistry, Ain Shams University
for partial fulfilment of the requirements for
Master Degree in Fixed Prosthodontics.

By:

Nourhan Wagdy Reda

B.D.S (2013)

Future University

Faculty of Dentistry
Ain Shams University
2020

SUPERVISORS

Dr. Amina Mohamed Hamdy

Professor of Fixed Prosthodontics

Faculty of Dentistry, Ain Shams University

Dr. Ghada Abd El Fattah

Lecturer of Fixed Prosthodontics

Faculty of Dentistry, Ain Shams University

Dr. Mohammed Nasser M. Anwar

Lecturer of Restorative Dentistry
Faculty of Dentistry, Ain Shams University

Acknowledgment

First of all, thanks to **Allah** as it should be for His Majesty and Greatness, for His blessings throughout my life...

Though only my name appears on the cover of this thesis, a great many people have contributed to its production, without them all this work would never have been possible.

I would like to express my profound gratitude to **Dr. Amina Mohamed Hamdy** for her great supervision, valuable instructions throughout this work.

I am also highly thankful to **Dr. Ghada Abd El Fattah** for her continuous motivation and kind support.

Special thanks to **Dr. Mohammed Nasser M. Anwar** who I am indebted to him for his continuous guidance.

And I wish to express my sincere appreciation to **Dr. Ayman Galal El-Dimeery**, who has been always there to listen and give advice. I am deeply grateful to him for the long discussions that helped me sort out the technical details of my work.

I am also thankful to **Dr. Sameh Mohamed Talaat** for his consistent notation on my writings and commenting on countless revisions of this manuscript.

And Finally, I would like to thank my cousin **Hashem Rizk** for his patience and careful reading, who helped me overcome many crisis situations during writing this thesis.

Dedication

This work is dedicated to **My Grandmother** (may **God** rest her soul in peace), **My Mother** for her continuous sacrifice; who taught me to trust in **God** & believe in hard work. **My Father** for being my first teacher, who believed in me since I was a little kid.

TABLE OF CONTENT

PAGE

LIST OF FIGURES	I
LIST OF TABLES	III
INTRODUCTION	1
REVIEW OF LITERATURE	3
STATEMENT OF PROBLEM	18
AIM OF THE STUDY	19
MATERIALS AND METHODS	20
RESULTS	46
DISCUSSION	60
SUMMARY	68
CONCLUSIONS	71
RECOMMENDATION	72
REFERENCES	73
ARABIC SUMMARY	

LIST OF FIGURES

Figure	Title	Page
1.	Zirconia re-inforced lithium silicate "Celtra® Duo" Block.	24
2.	Polymer-infiltrated ceramic "VITA ENAMIC®" Block.	24
3.	INSIZE® Digital Caliper.	25
4.	Universal tool grinder machine C40 Sungkwang.	25
5(a).	Celtra® Duo blocks ground to cylinders.	26
5(b).	VITA ENAMIC® blocks ground to cylinders.	26
6(a).	Celtra® Duo cylinders sliced into discs.	27
6(b).	VITA ENAMIC® cylinders sliced into discs	28
7.	IsoMet [™] 4000 Linear Precession Saw.	29
8.	Celtra TM Universal Stain and Glaze Liquid.	30
9.	Celtra TM Universal Overglaze.	30
10.	Glaze applied using Profi [™] Renfert Glazing Brush.	31
11.	Effect of Firing vs. Polishing on the biaxial flexural strength of Celtra® Duo	31
12.	Celtra® Duo Discs placed on a honeycomb tray for firing.	32
13.	Ivoclar Programat® EP5000 Furnace.	32
14.	Celtra® Duo manufacture's firing recommendations.	33
15.	VITA ENAMIC® Polishing Set Technical	34
16.	Saeshin Forte 200 Electric Motor.	34
17.	One side-marked discs.	35
18.	Discs covered by Home Bleaching Zoom NiteWhite Carbamide Peroxide (22%)	35
19.	Discs covered by Home Bleaching Zoom DayWhite Hydrogen Peroxide (14%)	36
20.	Photon Plus Dental Diode Laser .	37

21.	Discs covered by JW Power Bleaching NEXT (generation)	37
	gel.	
22.	Universal Testing machine Instron-3345.	39
23.	Disc supporting platform.	40
24.	Close-up view for disc placement.	40
25.	Application of load till fracture occurred.	40
26.	Tukon™ 1102 Wilson® Hardness Tester.	42
27.	Application of load for disc indentation.	43
28.	Magnifying eye piece.	44
29.	Before and after the indentation was made.	44
30.	Box plot showing biaxial flexural strength (Mpa) values for different groups	47
31.	Bar chart showing average biaxial flexural strength (Mpa) for different ceramic materials and bleaching protocols (A)	52
32.	Bar chart showing average biaxial flexural strength (Mpa) for different ceramic materials and bleaching protocols (B)	52
33.	Box plot showing micro-hardness values for different groups	54
34.	Bar chart showing average micro-hardness for different ceramic materials and bleaching protocols (A)	59
35.	Bar chart showing average micro-hardness for different ceramic materials and bleaching protocols (B)	59

LIST OF TABLES

Table	Title	Page
1	Materials used in this study.	20
2	Chemical composition of ceramic materials tested.	21
3	Mechanical properties of ceramic materials tested.	22
4	Sample grouping.	23
5	Tests grouping.	38
6	Descriptive statistics of biaxial flexural strength (Mpa)	46
7	Effect of different variables and their interactions on biaxial flexural strength (Mpa)	48
8	Mean ± standard deviation (SD) of biaxial flexural strength (Mpa) for different ceramic materials and bleaching protocols	51
9	Descriptive statistics of micro-hardness	53
10	Effect of different variables and their interactions on micro-hardness	55
11	Mean ± standard deviation (SD) of micro-hardness for different ceramic materials and bleaching protocols	58

Introduction

Aesthetic is the 'art and science of dentistry' and nowadays everyone is seeking for a perfect smile. For such purpose, trends for aesthetic dentistry are in a constant renewal. The simultaneous application of technical and artistic competencies allows a practitioner to achieve top notch aesthetic and functional results. The importance of diagnosis and treatment planning prior to any procedure can't be over-emphasized, remembering that oral health and function are vital to a successful aesthetic dentistry. Additionally, the understanding of the various aesthetic materials available; clinical indications and limitations in practice, in conjunction with patient satisfaction and the avoidance of unrealistic expectations. All these types of elements are of paramount importance to ensure that the goals of aesthetic dentistry are achieved.

Bleaching, composite and ceramic restorations are all tools to attain such goal. However, bleaching and ceramics have become more frequently used compared to composite restorations. Since carbamide peroxide home bleaching was introduced in the 1980s, this treatment has been received by the public as a conservative, economical and effective alternative for patient seeking aesthetics improvement in a relatively short period of time. (1) The "over-the-counter" (OTC) bleaching agents were first launched in the United States, containing lower concentrations of hydrogen peroxide or carbamide peroxide and sold directly to consumers for home use. Finally, the current in-office bleaching technique typically uses different concentrations of hydrogen peroxide, between 15% and 40%, with or without light.

Introduction

On the other hand, The popularity of all ceramic dental restorations has raised in recent years due to their superior aesthetics appearance and metal free structure⁽²⁾ increasing their use in a variety of restorative situations.

When mentioning Zirconia re-inforced lithium silicate "Celtra® Duo", the inclusion of 10% zirconium oxide ensures particularly high strength. The crystallites formed are 4-8 times smaller than crystals of conventional lithium disilicates. The result is an ultra-fine microstructure that combines high average flexural strength with a high glass content. This has positive effects on the light-optical and mechanical properties of the material.

On the other hand, Polymer-infiltrated ceramic "VITA ENAMIC®" is a "Dual Network" material, the dominant ceramic network is reinforced by a polymer network with each network penetrating the other creating a hybrid material that exhibits the positive characteristics of both a ceramic and a composite. The result is a material that mimics the strength and toughness of dentin and enamel.

On bleaching, the whitening agent may lead to alterations in the surface morphology as well as in the chemical and mechanical properties of the existing dental restorative materials ^(3, 4) Many studies are highlighting the effect of bleaching on the clinical success of different restorative materials. And since most patients who seek bleaching might already have some kind of restorations in their mouth, more studies are still needed specially with the introduction of new materials.