

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

MICRO WIND TURBINE MATRIX: DESIGN AND IMPLEMENTATION

BY

Abdallah Khaled Ebrahim Mohamed

A Thesis Submitted to the Faculty of Engineering at Cairo University
In partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE in Aerospace Engineering

MICRO WIND TURBINE MATRIX: DESIGN AND IMPLEMENTATION

By

Abdallah Khaled Ebrahim Mohamed

A Thesis Submitted to the Faculty of Engineering at Cairo University
In Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE in Aerospace Engineering

Under the Supervision of

Prof. Dr Ayman H. Kassem

Prof. Dr Gamal M. El-Bayoumi

Professor of Flight Dynamics and Control Aerospace Engineering Department Faculty of Engineering, Cairo University Professor of Flight Dynamics and Control Aerospace Engineering Department Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019

MICRO WIND TURBINE MATRIX: DESIGN AND IMPLEMENTATION

By

Abdallah Khaled Ebrhim Mohamed

A Thesis Submitted to the Faculty of Engineering at Cairo University
In partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE in Aerospace Engineering

Approved by the Examining Committee
Prof. Dr. Ayman Hamdy Mohamed Kassem, Thesis Main Advisor
Prof. Dr. Gamal Mahmoud Sayed El-Bayoumi, Advisor
Prof. Dr. Mohamed Khalil Ibrahim Khalil, Internal Examiner
Prof. Dr. Gamal Ahmed El-Shiekh , External Examiner
Head of the electronics and Communications Department of Pyramids High Institut

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019 Engineer's Name: Abdallah Khaled Ebrahim Mohamed

Date of Birth: 6/4/1990 **Nationality:** Egyptian

E-mail: abdallah.kh777@yahoo.com **Phone:** 01144161656/01098811345

Address: 21, fifth settlement, New Cairo, Cairo, Egypt

Registration Date: 1/3/2013 **Awarding Date:** / /

Degree: Master of science

Department: Aerospace Engineering

Supervisors: Prof. Dr Ayman Hamdy Mohamed Kassem

Prof. Dr Gamal El-Bayoumi

Examiners: Prof. Dr. Gamal Ahmed El-Shiekh External Examiner

Head of the electronics and Communications Department of Pyramids

High Institute

Prof. Dr. Mohamed Khalil Ibrahim Khalil Internal Examiner

Prof. Dr. Ayman Hamdy Mohamed Kassem Thesis Main Advisor

Prof. Dr. Gamal Mahmoud Sayed El-Bayoumi Advisor

Title Of Thesis:

Micro Wind Turbine Matrix: Design And Implementation

Key Words:

Wind Turbine, Microwind Turbine, Series Connection,

Summary:

The thesis objective is to design and build micro wind-turbine matrix capable of working at low speeds and producing enough electric energy for lighting applications. The wind-turbine matrix is very low cost as it uses recycled pc-fans.

Disclaimer

I hereby declare	that this thesis is m	ıy own original	work and	that no par	t of it has l	beer
submitted for a degr	ee qualification at a	ny other univer	sity or inst	itute.		

I further declare that I have appropriately acknowledged all sources used and have cited them in the references` section.

Name:	Date//
Signature:	

Acknowledgements

All praise and gratitude is due to ALLAH, Lord of the world. I would like to thank my supervisor Dr. Ayman Hamdy Kassem for his help, support and deep revision that added a lot to the value of the work in this thesis. I have a great appreciation to my advisor Dr. Gamal El-Bayoumi for his scientific advices, continuous support and redirecting me to the right way during my research.

Full thanks to all the Stuff of the Aerospace Engineering Department, Cairo University.

I would also like to thank all my friends for their efforts for their support throughout this work, specially, Engineers Deyaa EL-Haq Nabil Hassan and Basil Ahmed

I would also like to thank all my family, my father and mother for their encouragement and help during this thesis. I wish for them all the best in their life.

Abdallah Khaled

Table of Contents

List of Tables	V
List of Figures	VI
Nomenclature	IX
Abbreviation	XI
Abstract	XII
Chapter 1: Introduction	1
1.1 wind Turbine History	1
1.2 Types of Wind Turbine	4
1.2.1 Horizontal Axis Wind Turbine	4
1.2.2 Vertical Axis Wind Turbine	5
1.2.3 Darrieus Wind Turbine	6
1.2.4 Giromill	7
1.2.5 Savonius	7
1.2.6 Twisted Savonius	8
1.3 Wind Atlas For Egypt	9
1.4 Application and places For MWT's	12
1.5 Objectives	16
Chapter 2: Literature Review	17
2.1 Introductions	17
2.2 Horizontal Axis Micro Wind Turbines	17
Chapter 3: Mathematical Model for Wind Turbine	21
3.1 Introduction	21
3.2 Choosing the size of the rotor	21
3.3 Blade element momentum theory	23
3.4 Comparison between Experimental and mathematical results	28
3.5 The electric circuit of the system in one fan and one hundred fans	32
3.5.1 One fan circuit	32
3.5.2 Multi-fan connection	32
Chapter 4: Experimental Work	34
4.1 Introduction	34
4.2 The components of the fan system	34
4.2.1 The original Components of the Fan System	34
4.2.2 The Additives Components of the Fan System	35
4.3 Setting Fans as a Wind Turbine	35
4.3.1 Modifying the Connection of the generator wire	36
4.3.2 The Reason for connecting the two wires inside the Generator	38
4.3.3 The Final shape of the Project	39
4.4 First Results after Modification	40

4.4.1 The Power Value of each Micro Turbine	40
4.4.2 The Power Value of Micro Turbines connected in series	41
4.4.3 Comparing the Power to Number of Fans	42
4.4.4 The Acceptable Result to Build the Project	43
4.5 The Feasibility of the Project	44
4.5.1 The Direct Application on the Project	44
4.5.2 The indirect application on the project	47
4.5.3 Micro Wind Turbine Project	48
4.6 Summary	49
Chapter 5: Designing the Fan Turbine Matrix Holder Mechanism	50
5.1 Introduction	50
5.2 Loads over the wind turbine structure	51
5.2.1 Dead load of the turbines (The Weight of Turbines)	51
5.2.2 Surviving load over the turbines	51
5.3 Designing the structure using SAP 2000	51
5.3.1 Assuming cross section areas	51
5.3.2 Loads and reactions	52
5.3.3 Deflections due to stresses	53
5.4 Summary	56
Chapter 6 Conclusion and Recommendation for future work	57
6.1 Conclusions	57
6.2 Recommendations for future work	57
Appendix A	58
References	60

List of Tables

Table (1.1) wind observations at the meteorological stations	10
Table (1.2) comparison between small wind turbines and large wind turbines	11
Table (3.1) comparison between experimental and maximum theoretical RPM at certain	
air speed	28
Table (3.2) experimental power and power coefficient of different types of the micro	
Turbine	30
Table (3.3) electric power and power coefficient change with air speed	31
Table (4.1) determined power of each turbine individually	41
Table (4.2) determined power of turbines connected in series	41
Table (4.3) the relation between number of turbines and power	42

List of Figures

Figure (1.1) Heron's Wind wheel	1
Figure (1.2) Panemone windmill	1
Figure (1.3) James Blyth's wind turbine	3
Figure (1.4) Wind turbine 1887 Charles Brush	3
Figure (1.5) Horizontal-axis wind turbines	4
Figure (1.6) Vertical-axis wind turbines	5
Figure (1.7) Darrieus wind turbine	6
Figure (1.8) Giromill	7
Figure (1.9)Savonius wind turbine	7
Figure (1.10)Twisted Savonius	8
Figure (1.11)stations of analyzing over Egypt	9
Fig (1.12) the relation between cut-in speed and wind turbine diameter	12
Figure (1.13) towns in Italy uses wind turbines over buildings, Casauria October 4,	
2010	12
Figure (1.14) one hundred watt small wind turbine over Shau KeiWan Government	
Secondary School building roof	13
Figure (1.15) assembly of forty small turbines ,Hong Kong	13
Figure (1.16) positioned on the roof of Intel's head office Building Robert Noyce in	
California, the company is installing a total of fifty eight small turbines	14
Figure (1.17) 400w off grid high speed road CCTV power source horizontal small	
wind turbine	14
Figure (1.18)single wind turbine will produce 9,600KwH of energy	15
Figure (1.19)tiny turbines in Hunan province, China/ Lloyd Alter	16
Figure (2.1) the view of MWT with a 230 mm diameter	17
Figure (2.2) MW Energy Portable Turbine	19
Figure (2.3) piezoelectric wind turbine	19
Figure (2.4) the manufactured blades and the wind tunnel	20
Figure (3.1) 80 X 80 mm cooler fan	22
Figure (3.2) $120 \times 120 \ mm$ cooler fan	22
Figure (3.3) Blade element momentum theory in flow chart form	27

Figure (3.4) the relation TSR and power coefficient in Matlab	28
Figure (3.5) comparison between experimental and maximum theoretical RPM at certain air speed Figure (3.6) power coefficient of different types of the micro turbine	29 30
Figure (3.7) power coefficient change with air speed	31
	32
Figure (3.9) the complete circuit of one hundred fan turbine connection	32
Figure (3.10) The electrical system of MWT	33
Figure (4.1) the generator core with different sizes	34
Figure (4.2) the view of the fastener disk	35
Figure (4.3) setting the turbines on the small wind tunnel	36
Figure (4.4) the generator wire connected to the control board	36
Figure (4.5) after modifying the connection of wires	3'
Figure (4.6) leds used to show the electric produced from one micro turbine	3
Figure (4.7) connecting one wire inside the generator	3
Figure (4.8) connecting the two wire each with separated rectifier	39
Figure (4.9) connecting the two wires inside the generator by one rectifier	39
Figure (4.10) The 100 micro turbines before connecting them together	40
Figure (4.11) The power determined with two air speeds	42
Figure (4.12) The relation between number of turbine and power	4.
Figure (4.13) with 4 m/s air speed of small win tunnel	4.
Figure (4.14) with 7.5 m/s air speed of small win tunnel	4
Figure (4.15) the MWT's in laboratory	4
Figure (4.16) connecting two bulbs in series with the turbine project	4
Figure (4.17) connecting 4 bulbs in series with the turbine project	4:
Figure (4.18) connecting 6 bulbs in series with the turbine project	4
Figure (4.19) connecting 8 bulbs in series with the turbine project	4
Figure (4.20) connecting 8 bulbs in series with the turbine project with increasing the wind speed	4′
Figure (4.21) the indirect use of the project	4
Figure (4.22) Micro Wind Turbine Project 100	48
Figure (5.1) isometric of the matrix of wind turbines holder mechanism	5(

Figure (5.2)Loads over the structure		52
Figure (5.3) the reaction at the ground		52
Figure (5.4)The structure maximum deflection	ı	53
Figure (5.5)The bending moment about y-axis		53
Figure (5.6) the bending moment about z-axis		54
Figure (5.7) torsion diagram		54
Figure (5.8) shear force diagram in y-direction	ı	55
Figure (5.9) Shear force diagram in z-direction	1	55
Figure (5.10) the cross section area safety chec	ck	56