

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

Study the Therapeutic Role of Mesenchymal Stem Cells in a Model of Temporal Lobe Epilepsy

A Thesis

Submitted for the degree of Ph.D. of Science in Biochemistry As fulfillment for requirements of the Ph.D. of Science

By

Rania Said Salah Mohamed zedan

Assistant researcher- National Research Centre (M.Sc. Biochemistry, Faculty of Science, Tanta University, 2010)

Under the Supervision of

Prof. Gilane Mohamed Sabry

Professor of Biochemistry Biochemistry Department Faculty of Science Ain Shams University

Prof. Somia Hassan Abd-Allah

Professor of Biochemistry Medical Biochemistry and Molecular Biology Department Faculty of Medicine Zagazig University

Prof. Hanaa Hamdy Ahmed

Professor of Hormones Head of Hormones Department Medical Research Division National Research Centre

Dr. Rasha El-Sherif Hassan

Assistant Professor of Biochemistry Biochemistry Department Faculty of Science Ain Shams University

Biochemistry Department Faculty of Science - Ain Shams University (2020)

My deepest heartfelt gratefulness to **Prof. Hanaa Hamdy Ahmed**, Professor of Hormones, Head of Hormones Department, Medical Research Division, National Research Centre for suggesting the point of this thesis, building up the hypothesis related to the results. Also, I thank her kind supervision, continuous support, and valuable guidance in all of the theoretical and practical aspects of this work.

I thank **Prof. Gilane Mohamed Sabry**, professor of Biochemistry, Biochemistry Department, Faculty of Science, Ain Shams University for kindly supervising the present work, reading and criticizing the thesis. Her valuable guidance and ultimate support are greatly appreciated.

I express my appreciation to **Prof. Somia Hassan Abd-Allah**, Professor of Biochemistry, Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University for her great help and valuable advices to accomplish this work in the part of stem cells of the current work.

Sincere thanks and gratitude are to **Dr. Rasha El-Sherif Hassan**, Assistant Professor of Biochemistry, Biochemistry Department, Faculty of Science, Ain Shams University for kindly supervising this work, her valuable guidance and ultimate support are greatly appreciated.

I wish to express my deepest feeling of gratitude of **Prof. Wagdy Khalil Bassaly Khalil**, Professor of Molecular Genetic, Cell Biology Department, Genetic Engineering and Biotechnology Division, National Research Centre for his scientific help and providing all facilities throughout this work in regarding the molecular study of the current work,

I wish to thank **Dr. Ahmed A. Abd-Rabou**, Researcher of Biochemistry, Hormones Department, Medical Research Division, National Research Centre for his scientific help and continuous support.

List of contents

Title	Page
Abstract	xxi
Introduction	1
Aim of the Work	4
Review of literature	5
Epilepsy	5
Epileptic historical perspective	5
Prevalence of epilepsy	6
Classification of epilepsy	6
Temporal Lobe Epilepsy	9
Hippocampal sclerosis	12
Mossy Fiber Sprouting	15
Symptoms of epilepsy	17
Etiology of epilepsy	18
Pathogenesis of epilepsy	19
Pathophysiology of TLE	20
Circuit	21
Oxidative stress	25
Neuroinflammation	28
Apoptosis	31
Diagnosis of epilepsy	34
Current therapeutic approaches for epilepsy	37
Medications	37
Surgery	39
Vagus nerve stimulation	39

Title	Page
Ketogenic diet	40
Animal models for TLE	40
Pilocarpine model for TLE	41
Stem cells	46
Stem cell properties	46
Self-renewal	46
Potency	47
Types of stem cells	48
Embryonic stem cells	50
Umbilical cord blood stem cells	51
Induced pluripotent stem cells	52
Adult stem cells	52
Neural stem cells	53
Hematopoietic stem cells	53
Mesenchymal stem cells	54
Bone marrow-derived mesenchymal stem cells	57
Adipose tissue-derived mesenchymal stem cells	57
MSCs identity	59
MSCs homing efficiency	60
Paracrine action of MSCs	64
Mesenchymal stem cells in neurodegenerative diseases	65
MSCs crossing the blood brain barrier	67
Neuronal differentiation of MSCs	68
Induction of endogenous neurogenesis	69
Immunomodulation and neuroinflammation activity	71
Protein aggregate clearance	75

Title	Page
Anti-apoptotic activity	75
Neoangiogenesis activity	76
Antioxidative activity	77
MSCs for cellular replacement via direct reprogramming	78
Challenges for MSCs applications	79
Material and Methods	81
Rat mesenchymal stem cells (Rat MSCs)	81
Bone marrow mesenchymal stem cells derivation and expansion	81
Adipose mesenchymal stem cells derivation and expansion	82
Characterization of mesenchymal stem cells	83
Morphological characterization of MSCs	83
Identification of MSCs surface markers CD29, CD73, CD34 and CD45 gene expression by conventional polymerase chain reaction	83
Total RNA extraction from MSCs	83
First-strand cDNA synthesis	85
Reverse transcription Polymerase Chain Reaction (RT-PCR)	86
Labeling of MSCs	87
MSCs infusion	90
Biological experimental protocol	90
I) Materials	90
Chemicals and drugs	90
Animal handling	90
Induction of status epilepticus	91
Animal grouping	92

Title	Page
II) Methods	93
Brain tissue sampling	93
Biochemical determinations	94
1-Detection of heat shock protein-70 in brain homogenate	94
2-Assessment of S100 calcium binding protein β in brain homogenate	99
3-Quantification of Caspase-8 in brain homogenate	102
4-Estimation of gamma-aminobutyric acid in brain homogenate	105
5-Evaluation of semaphorin4D in brain homogenate	108
6-Determination of galanin neuropeptide in brain homogenate	112
7-Quantitative evaluation of brain total protein	116
Molecular genetic analyses	117
Gene expression analysis by RT-PCR	117
Total RNA extraction	117
RT-PCR	120
Agarose gel electrophoresis	122
Histopathological procedure	122
Statistical analyses	123
Results	124
Mesenchymal stem cells identification	124
Verification of MSCs homing	125
Observational changes after pilocarpine administration	127
Biochemical findings	127
Molecular genetic data	136
Histopathological description	145

Title	Page
Discussion	156
Summary	180
Conclusion	184
References	185
Arabic abstract	
Arabic summary	
Arabic conclusion	

List of abbreviations

ACh Acetylcholine

AChR Acetylcholine receptor

AD Alzheimer's disease

AD-MSCs Mesenchymal stem cells derived from adipose tissue

AEDs Anti-epileptic drugs

AIF Apoptosis-inducing factor

Akt Serine/threonine-protein kinase

ALS Amyotrophic lateral sclerosis

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

AMV Avian myeloblastosis virus

Ang-1,2 Angiopoietin-1,2

ANOVA One way analysis of variance

ATP Adenosine triphosphate

Aβ Amyloid-beta

Bad Bcl-2 associated agonist of cell death

Bax Bcl-2-associated x protein

BBB Blood brain barrierBcl-2 B-cell lymphoma-2

Bcl-Xl B-cell lymphoma-extra large

BDNF Brain derived neurotropic factor

Bim Bcl-2-like protein 11

BM-MSCs Mesenchymal stem cells derived from bone marrow

[Ca⁺⁺]m Mitochondrial calcium concentration

CAD Caspase actuated DNase

CAMP Cyclic adenosine monophosphate

Casp-8 Caspase-8

CBZ Carbamazepine

CCR CC chemokine receptor

CD Cluster of differentiation

cDNA Complementary DNA

CI Complex I

[Cl⁻]I Intracellular chloride concentration

CNS Central nervous system

CNTFs Cilliary neurotrophic factors

COX-2 Cyclooxygenase-2

CREB Cyclic adenosine monophosphate response element binding protein

CSF Cerebrospinal fluid

CT Computed tomography

CXCR CXC chemokine receptor

DAMP Damage associated molecular patterns

DEDs Death effector domains

DFF DNA fragmentation factor

DISC Death induces signaling complex

DMEM Dulbecco's modified eagle's medium

dNTP Deoxynucleoside triphosphate

EAE Experimental autoimmune encephalomyelitis

ECM Extracellular matrix.

EDTA Ethylene diamine tetra acetic acid

EEG Electroencephalography

EGABA GABAAR currents

EGFR Epidermal growth factor receptor

ELISA Enzyme-linked immunosorbent assay

EPO Erythropoietin

ESCs Embryonic stem cells

EtOH Ethanol

FADD Fas associated death domain protein

FAK Focal adhesion kinase

FasL Fas ligand

FasR Fas receptor

FBS Fetal bovine serum

FGF Fibroblast growth factor

FGF-1 Fibroblast growth factor-1

FGF-2 Fibroblast growth factor-2

FKHR Fork head in rhabdomyosarcoma

FKHRL-1 Fork head in rhabdomyosarcoma like-1

FLAIR Fluid-attenuated inversion recovery

GABA Gama-aminobutyric acid

GABA-R Gama-aminobutyric acid receptor

GABA-RA Gama-aminobutyric acid receptor-A

GABA-RB Gama-aminobutyric acid receptor-B

GABA-T Gama-aminobutyric acid aminotransferase

GAD67 Glutamic acid decarboxylase 67

GAL Galanin

GALR2 Galanin receptor 2

GAT-1 Gama-aminobutyric acid transporter-1

GAT-3 Gama-aminobutyric acid transporter-3

GDNF Glial-derived neurotrophic factor

GJIC Gap junctional intercellular communication

GM-CSF Granulocyte macrophage-colony stimulating factor

GSH Glutathione

GSH-PX Glutathione peroxidase

GSH-RX Glutathione reductase