

Genetic fingerprint of some *Alhagi graecorum* populations based on DNA polymorphism

A thesis Submitted for Faculty of Science Ain Shams University

In Partial Fulfillment of the Requirements for Degree of Master of Science in Botany (Genetics)

By

Ghada Mohamed Hussien Abd El-Hak

B.Sc. in Botany, Faculty of science, Ain Shams University (2014)

Supervised by

Dr. Hussam El-Din Zaki Hassan

Professor of plant cytogenetics, Botany Department
Faculty of Science
Ain Shams University

Dr. Atif Saad Halem

Lecturer of plant cytogenetics, Botany Department, Faculty of Science Ain Shams University

Dr. Walaa Abou El-Wafa Rayan

Lecturer of plant cytogenetics, Botany Department, Faculty of Science Ain Shams University

Supervision Sheet

Genetic fingerprint of some *Alhagi graecorum* populations based on DNA polymorphism

M.Sc. Thesis

By

Ghada Mohamed Hussien Abd El-Hak

B.Sc. in Botany, Faculty of science, Ain Shams University (2014)

Supervision committee

Dr. Hussam El-Din Zaki Hassan

Professor of plant cytogenetics, Botany Department, Faculty of Science, Ain Shams University

Dr. Atef Saad Halem

Lecturer of plant cytogenetics, Botany Department, Faculty of Science, Ain Shams University

Dr. Walaa Abou El-Wafa Rayan

Lecturer of plant cytogenetics, Botany Department, Faculty of Science, Ain Shams University Name: Ghada Mohamed Hussien Abd El-Hak

Title of thesis: Genetic fingerprint of some Alhagi graecorum

populations based on DNA polymorphism

Degree: Master in Botany – Molecular genetics

This thesis for M.Sc. degree has been approved by:

Supervision committee:

Dr. Hussam El-Din Zaki Hassan

Professor of plant cytogenetics, Botany Department, Faculty of Science, Ain Shams University.

Dr. Atif Saad Halem

Lecturer of plant cytogenetics, Botany Department, Faculty of Science, Ain Shams University.

Dr. Walaa Abou El-Wafa Rayan

Lecturer of plant cytogenetics, Botany Department, Faculty of Science, Ain Shams University.

Examination committee:

Dr. Mohamed Soliman Ahmed Soliman

Professor of plant cytogenetics, Botany Department, Faculty of Science, Helwan University.

Dr. Thoria Rashad Mohamed

Professor of cytology and genetics, Botany department, Faculty of Women for Arts, Science and Education, Ain Shams University.

Dr. Hussam El-Din Zaki Hassan

Professor of plant cytogenetics, Botany Department, Faculty of Science, Ain Shams University.

Date: / 2020

Dedication

TO THE SOUL OF MY FATHER

Dedication

To my MOTHER She is the reason why I am here. For everything you've done for me and all that you still do, THANK YOU

To my brothers "Mustafa, Hussien and Nour", you are my backbone.

To my fiancé "Ahmed", Thank You for your continuous support and encouragement.

ACKNOWLEDGEMENT

My first and last gratitude to the Almighty "**ALLAH**" for giving me the health, strength, patience and faith to undertake this work.

I would like to express my sincere and special thanks to **DR. HUSSAM EL-DIN ZAKI HASSAN**, Professor of plant cytogenetics, Botany Department, Faculty of science, Ain Shams University for his keen supervision, assistance in preparing and revising the manuscript, continuous encouragement and valuable advices.

Thanks and gratitude to **DR. ATEF SAAD HALEM**, Lecture of plant cytogenetics, Botany Department, Faculty of science, Ain Shams University for his supervision and continuous support.

Thanks and gratitude to **DR. WALAA ABOU EL-WAFA RAYAN**, Lecture of plant cytogenetics, Botany Department, Faculty of science, Ain Shams University for her support and aiding in formatting and revising the manuscript.

I also like to express my appreciation and everlasting gratitude to **DR. SHAFIK DARWISH IBRAHIM**, Researcher of molecular genetics, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC) for his fruitful help and advice throughout the course of this work, also for providing all facilities and supplies to carry out this study.

I would also like to thank the head of Botany Department **DR. HANAA SHABARAA**, Faculty of science, Ain Shams University, for her encouragement and help. Thanks are extended to **DR. MAGDA MAHMOUD ELARABY** and **DR. MAHER SHEHATA**, the former heads of Botany Department.

I like to express my deepest gratitude to **DR. ABDULLAH EL-ATTAR** and **ALIAA MUHAMMAD** from Botany Department, Faculty of science, Ain Shams University for their cooperation in supplying the *Alhagi graecorum* samples.

ABSTRACT

Ghada Mohamed Hussien Abd El-Hak

M. Sc., Genetic fingerprint of some *Alhagi graecorum* populations based on DNA polymorphism

Department of Botany, Faculty of science, Ain Shams University, Egypt, 2020

The present investigation was conducted to study the genetic diversity among twenty-five Egyptian Alhagi graecorum genotypes collected from five locations (El-Dakhla Oasis, Ain shams university, Wadi El-Rayan, Qarun lake and Siwa Oasis) using individual- and bulked samples-based approaches. Eight ISSR primers revealed a high percentage of polymorphism (84.16%) across all the studied genotypes and (78.35%) among the five populations, while SCoT primers produced 73.57% (ten primers) and 65.38% (nine primers), respectively. Also, average polymorphism information content (PIC) for amplified DNA of individual samples was 0.860 for SCoT and 0.875 for ISSR. The genetic diversity analysis for Alhagi graecorum revealed similar dendrograms with some slight variations. The results of UPGMA cluster analysis and PCoA grouped the twenty-five Alhagi genotypes according to their geographical location. The study also included sequencing for selected unique fragments from SCoT and ISSR profiles (bulked-DNA samples). The obtained results demonstrate that ISSR was better than SCoT to detect genetic diversity among *Alhagi graecorum* genotypes.

Key words: Medicinal plant, Genetic variation, *Alhagi graecorum*, Molecular markers, SCoT, ISSR, Sequencing.

CONTENTS

List of tables	IV
List of figures	
List of abbreviations	X
1. Introduction	1
2. Review of literature	7
2.1 Alhagi graecorum	7
2.2 Molecular markers	15
2.2.1 Start codon targeted DNA (SCoT)	17
2.2.2 Inter simple sequence repeat (ISSR)	20
2.2.3 SCoT and ISSR markers	31
2.3 DNA Sequencing	35
3. Materials and methods	37
3.1 Plant material	37
3.2 Genomic DNA extraction	38
3.3 Start codon targeted DNA (SCoT)	44
3.4 Inter simple sequence repeat (ISSR)	46
3.5 Bulking DNA	49
3.6 Statistical analysis	-
3.6.1 Genetic variation by using AMOVA analysis	49
3.6.2 Genetic relatedness and cluster analysis	
3.6.3 Principal coordinates analysis (PCoA)	
3.6.4 Diversity statistics	51
3.7 Sequencing	53
4. Results	55
4.1 Start codon targeted (SCoT) polymorphism	55
4.1.1 Total polymorphism generated by ten SCoT	
primers among the studied twenty-five Alhagi	
graecorum genotypes	55
4.1.2 The potentiality of each SCoT primer for	
detecting intra-polymorphism within each	
studied <i>Alhagi</i> populations	67
4.1.3 Analysis of molecular variance (AMOVA)	71
4.1.4 Genetic relationships among the twenty-five	
Alhagi graecorum genotypes as revealed by	
SCoT markers	71

ı

	4.1.5	Cluster analysis as revealed by SCoT	71
	4.1.6	Principal coordinates analysis (PCoA)	72
4.2	Inter s	simple sequence repeat (ISSR)	77
		Total polymorphism generated by ten	
		ISSR primers among the studied twenty-five	
		Alhagi graecorum genotypes	77
	4.2.2	The potentiality of each ISSR primer for detecting	
		intra-polymorphism within each studied Alhagi	
		populations	86
	4.2.3	Analysis of molecular variance (AMOVA)	89
		Genetic relationships among the twenty-five	
		Alhagi graecorum genotypes as revealed by	
		ISSR markers	89
	4.2.5	Cluster analysis as revealed by ISSR	89
	4.2.6	Principal coordinates analysis (PCoA)	90
4.3		oined data	93
	4.3.1	Genetic relationships among the twenty-five	
		Alhagi graecorum genotypes as revealed by	
		combined data	93
	4.3.2	Cluster analysis as revealed by combined data	94
		Principal coordinates analysis (PCoA)	94
4.4		parison among the efficiency of SCoT and	
		markers in the <i>Alhagi</i> genome analysis	98
4.5	-	polymorphism detected among five bulked	
	_	ation samples of Alhagi graecorum using	
	SCoT	assay	100
	4.5.1	Genetic relationships among the studied	
	4.5.0	populations as revealed by SCoT markers	104
	4.5.2	Cluster analysis as revealed by SCoT	104
1 -	4.5.3	Principal coordinates analysis (PCoA)	106
4.6	-	polymorphism detected among five bulked	
		lation samples of Alhagi graecorum using	
		assay	107
	4.0.1	Genetic relationships among the studied	
	162	populations as revealed by ISSR markers	111
		Cluster analysis as revealed by ISSR	
	4.0.3	Principal coordinates analysis (PCoA)	113

4.7 Combined data	114
4.7.1 Genetic relationships among the studied	
populations as revealed by combined data	114
4.7.2 Cluster analysis as revealed by combined data	114
4.7.3 Principal coordinates analysis (PCoA)	116
4.8 Comparison among the efficiency of SCoT and ISSR	
markers in the <i>Alhagi</i> genome analysis	117
4.9 Sequencing of selected SCoT fragments resulted from	
bulked DNA profiles of Alhagi graecorum	119
4.10 Sequencing of selected ISSR fragments resulted from	
bulked DNA profiles of Alhagi graecorum	126
5. Discussion	131
6. Summary	
7. References	157
8. Arabic summary	

LIST OF TABLES

Table	NO.
Table (3.1): List of the twenty-five <i>Alhagi graecorum</i> genotypes and	37
their collection region	
Table (3.2): Genomic DNA concentration and purity of <i>Alhagi</i> genotypes.	43
Table (3.3): The list of primers and their nucleotide sequences used for SCoT markers in amplification of <i>A. graecorum</i> DNA.	46
Table (3.4): The list of primers and their nucleotide sequences used for ISSR markers in amplification of <i>A. graecorum</i> DNA.	48
Table (4.1): Total number of bands, number of polymorphic and unique bands as well as monomorphic bands, percentage of polymorphism, fragment size range and polymorphic information content (PIC) as revealed by SCoT analysis of 25 A. graecorum genotypes	57
Table (4.2): The percentage of intra-population polymorphism recorded by ten SCoT primers among the different <i>Alhagi graecorum</i> genotypes collected from five locations.	62 & 63
Table (4.3): Analysis of molecular variance (AMOVA) for ten SCoT markers among <i>A. graecorum</i> populations.	71
• • • •	
Table (4.4): Genetic similarity matrix among the 25 <i>Alhagi graecorum</i> genotypes as computed according to Dice's coefficient from SCoT data.	74
Table (4.5): ISSR primer names, total number of bands, polymorphic bands, monomorphic bands, percentage of polymorphism, unique bands, fragment size range and polymorphic information content (PIC) as revealed by ISSR analysis.	79
Table (4.6): The percentage of intra-population polymorphism recorded by eight ISSR primers among the different <i>Alhagi graecorum</i> genotypes collected from five locations.	83
Table (4.7): Analysis of molecular variance (AMOVA) for eight ISSR markers among <i>A. graecorum</i> populations.	89
Table (4.8): Genetic similarity matrix among the 25 <i>Alhagi graecorum</i> genotypes as computed according to Dice's coefficient from ISSR data.	91
Table (4.9): Genetic similarity matrix among the 25 <i>Alhagi graecorum</i> genotypes as computed according to Dice's coefficient from combined data.	95

Table (4.10): Levels of polymorphism and comparison of informativeness with SCoTs and ISSRs markers in the	99
25 Alhagi genotypes.	
Table (4.11): SCoT primer names, total number of bands, polymorphic bands, monomorphic bands, percentage of polymorphism, unique bands, fragment size range and polymorphic information content (PIC) as revealed by SCoT analysis (bulked population samples).	102
Table (4.12): Genetic similarity matrix among the five <i>Alhagi</i> graecorum populations (bulked DNA samples) as computed according to Dice's coefficient from SCoT data.	104
Table (4.13): ISSR primer names, total number of bands, polymorphic bands, monomorphic bands, percentage of polymorphism, unique bands, fragment size range and polymorphic information content (PIC) as revealed by ISSR analysis (bulked population samples).	109
Table (4.14): Genetic similarity matrix among the five <i>Alhagi</i> graecorum populations (bulked DNA samples) as computed according to Dice's coefficient from ISSR data.	111
Table (4.15): Genetic similarity matrix among the five <i>Alhagi</i> graecorum populations (bulked DNA samples) as computed according to Dice's coefficient from combined data.	114
Table (4.16): Levels of polymorphism and comparison of informativness with SCoT and ISSR markers in the five <i>Alhagi</i> graecorum populations.	118
Table (4.17): Showing the homology, identity, coverage and accession number of some SCoT markers.	122
Table (4.18): Base frequency and length of sequenced region of SCoT-5, SCoT-20 and SCoT-21 markers for the studied genotypes obtained from bulked DNA samples for different geographic regions.	125
Table (4.19): Showing the homology, identity, coverage and accession number of some ISSR markers.	128
Table (4.20): Base frequency and length of sequenced region of ISSR-1 and ISSR-4, markers for the studied genotypes obtained from bulked DNA samples for different geographic regions.	130

LIST OF FIGURES

Figure	NO.
Figure (3.1): Photograph of the extracted DNA, M refers to DNA	44
ladder 100 bp plus ladder.	
Figure (4.1.1): Agarose gel electrophoresis of PCR amplicons using	
SCoTs (4, 5, 6 and 7) primers to genetically characterize A.	64
graecorum genotypes.	
Figure (4.1.2): Agarose gel electrophoresis of PCR amplicons using	
SCoTs (18, 19, 20 and 21) primers to genetically characterize	65
A. graecorum genotypes.	
Figure (4.1.3): Agarose gel electrophoresis of PCR amplicons using	
SCoTs (23 and 24) primers to genetically characterize A.	66
graecorum genotypes.	
Figure (4.2): The intra polymorphism values detected by ten SCoT	
primers among <i>Alhagi</i> samples gathered from 1=El-Dakhla	70
Oasis, 2=Ain shams university, 3=Wadi El-Rayan, 4=Qarun	
lake, 5=Siwa Oasis.	
Figure (4.3): Dendrogram for the 25 Alhagi graecorum genotypes	
constructed from the SCoT data using Unweighed Pair-group	75
Arithmetic Average (UPGMA) and similarity matrix	
computed according to Dice's coefficient.	
Figure (4.4): Scatter plot of principal coordinate analysis (PCoA) of 25 <i>Alhagi</i> individuals based on SCoT marker data.	76
Figure (4.5.1): Agarose gel electrophoresis result for PCR amplicons	
using ISSRs (1, 4, 5 and 6) primers to genetically characterize	
DNA of A. graecorum genotypes (numbered from 1-25). M	84
refers to DNA marker 100 bp plus.	
Figure (4.5.2): Agarose gel electrophoresis result for PCR amplicons	
using ISSRs (7, 9, 10 and 18) primers to genetically	
characterize DNA of <i>A. graecorum</i> genotypes (numbered from	85
1-25). M refers to DNA marker 100 bp plus.	
Figure (4.6): The polymorphism values detected by eight ISSR	
primers among <i>Alhagi</i> samples gathered from 1=El-Dakhla	00
Oasis, 2=Ain shams university, 3=Wadi El-Rayan, 4=Qarun	88
lake, 5=Siwa Oasis.	
Figure (4.7): Dendrogram for the 25 Alhagi graecorum genotypes	
constructed from the ISSR data using Unweighed Pair-group	02
Arithmetic Average (UPGMA) and similarity matrix	92
computed according to Dice's coefficient.	
Figure (4.8): Scatter plot of principal coordinate analysis (PCoA) of	02
25 Alhagi individuals based on ISSR marker data.	93