

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Ain Shams University Faculty of Science Biochemistry Department

Synergism of siRNA and Doxorubicin on Breast Cancer Cell Lines

A thesis

Submitted for the degree of Master of Science in Biochemistry as a partial fulfillment for requirements of the Master of Science

By

Salma Abdelmonem Mahmoud Aboelela

Pre-Master in Biochemistry Ain Shams University (2013)

Under Supervision of

Prof. Dr / Amina M. Medhat

Professor of Biochemistry Biochemistry Department Faculty of Science Ain Shams University

Prof. Dr / Abeer M. Ashmawey

Professor of Medical Biochemistry Cancer Biology Department National Cancer Institute Cairo University

Declaration

I declare that this thesis has been composed and the work recorded in has been done by myself

It has not been submitted for any other degree at this or any other university.

Salma Aboelela

Dedication

I dedicate this thesis to my beloved family; my parents and my brothers, without whom this thesis was not to be accomplished, I am so grateful for their endless love and support.

I am sincerely thankful for all my friends and colleagues who helped me throughout the entire process; I will always appreciate their great effort and help.

Acknowledgement

By all means of gratitude, I would like to express my sincere thanks and appreciation to **Prof. Dr. Amina Mohamed Medhat**, Professor of Biochemistry, Faculty of Science, Ain Shams University, for accepting me as a Master student under her kind supervision and walking me step by step through the entire process from the very beginning of my work until writing and finishing this thesis and until this moment. I am so grateful for all the effort she has done with me and for being so patient and caring. Prof. Amina inspired me personally and professionally, she was beyond generous with her knowledge, I learned every single detail from her constructive remarks. No candidate can ever have a better supervisor.

I declare my cordial thanks and appreciation to **Prof. Dr. Abeer Mostafa Ashmawey,** Prof. of Medical Biochemistry, National
Cancer Institute - Cairo University, for offering me the chance to
perform a Master degree on her project under her supervision.
Prof. Abeer is the mainstay of this work; she offered me all ways
of support during the whole process. She was so generous and
kind in paving the way for me to perform this work; she offered
me her laboratory, all instruments and chemicals used. She was
always encouraging me and was my greatest assistance at
National Cancer Institute, I have had the honor to work under
her supervision and I will always remain her faithful student.

My sincere thanks and gratefulness goes to **Prof. Dr. Heba Shaker**, Professor of Clinical Pathology, National Cancer Institute

– Cairo University, for her unique support and guidance on the

professional and personal levels during our working period together and still. Prof. Heba has always been a great backup and a loyal mentor for years, she was always my source of motivation through the hard circumstances at NCI, I am so proud I had the chance to work under her supervision.

I would like to express my special thanks and gratefulness to **Prof. Dr. Nadia Morcos**, Prof. of Biochemistry, Faculty of Science, Ain Shams University for teaching me the statistical part performed in this thesis. Dr. Nadia helped me to comprehend the principles of statistics on the theoretical and practical level, she made all the difference in making me like and understand statistics, I will always be grateful for her patience, support and her kind effort until this work was accomplished.

I am greatly indebted to **Prof. Dr. Mahmoud Saeed,** Prof. of Biochemistry, Faculty of Science, Ain Shams University, for his kind assistance and guidance in walking me step by step through the statistics software used to accomplish this work. No words can express my thankfulness and appreciation, I am so grateful Dr. Mahmoud was able to teach me whole heartedly during his very busy schedule and to offer me his valuable time to learn and get to apply the steps by myself.

My sincere gratitude and appreciation are to **Dr. Eman Desouky,** Lecturer of Epidemiology and Biostatistics at National Cancer Institute — Cairo University, for her assistance and help in performing a particular part in the statistics section in this work. Dr. Eman offered me all kind of support to accomplish my work in a very short time, despite her busy schedule and work

overload. I am so honored I got to know a great person inside and out like Dr. Eman.

The chemicals and kits of this work were obtained through a grant funded by **Cairo University Foundation of Egypt** (The second Cairo university forum).

Salma Aboelela

Contents

Item No.	Subject	Page
	Abstract	I
	List of Abbreviations	II
	List of Tables	V
	List of Figures	VI
	Introduction	VIII
	Aim of the Work	XII
1.	Review of Literature	
1.1.	Cancer	1
1.1.1.	Cancer statistics globally	1
1.1.2.	Cancer statistics in Egypt	2
1.1.3.	How cancer arises?	3
1.1.4.	Hallmarks of cancer	4
1.2.	Breast cancer	5
1.2.1.	Breast cancer statistics globally	5
1.2.2.	Who gets breast cancer?	6
1.2.3.	Symptoms	7
1.2.4.	Causes and risk factors	7
1.2.4.1.	Family history	7
1.2.4.2.	Reproductive factors	7
1.2.4.3.	Estrogen	8
1.2.4.4.	Breast cancer related genes	8
1.2.5.	Anatomy of the human breast	10
1.2.6.	Histopathology and grading of breast cancer	12
1.2.7.	Molecular classification of breast carcinoma	15
1.2.7.1.	Breast tumor progression	17
1.2.7.2.	Other types of breast cancer	19
1.2.8.	Breast cancer cell line classification	20
1.3.	Breast cancer treatment	23
1.3.1.	Chemotherapy	24
1.3.1.1.	When is chemotherapy given for breast cancer?	25
1.3.1.2.	Possible side effects of chemotherapy for breast	26
	Cancer	
1.3.2.	Types of chemotherapy	27
1.3.2.1.	Doxorubicin	27
1.3.2.1.1.	Chemical structure	28

1.3.2.1.2.	Mechanism of action	29
1.3.2.1.3.	Mechanism of doxorubicin-induced cardiotoxicity	32
1.4.	Telomeres and telomerase	32
1.4.1.	Telomeres	32
1.4.1.1.	Structure and function	32
1.4.1.2.	Telomeres and end replication problem	34
1.4.2.	Telomerase	37
1.4.2.1.	Structure and function	37
1.4.2.2.	Telomerase and cancer	38
1.5.	RNA Interference	40
1.5.1.	Mechanism of gene silencing by siRNA	41
1.5.2.	The role of RNA interference in cancer therapy	43
1.5.3.	Mechanisms of siRNA delivery	44
1.5.3.1.	Transfection	44
1.5.3.1.1.	Biological method	45
1.5.3.1.2.	Chemical methods	46
1.5.3.1.3.	Physical methods	47
1.5.3.2.	Off target effects	48
1.6.	Apoptosis	49
1.6.1.	Caspases	49
1.6.1.1.	Caspases classification	50
1.6.1.2.	Biochemistry of Caspases	50
1.6.2.	Apoptotic signaling pathways	52
1.6.2.1.	Extrinsic pathway	52
1.6.2.2.	Intrinsic pathway	53
1.6.3.	Characteristic changes during final stages of cell death	56
	(features of apoptosis)	
1.6.4.	Apoptotic changes in cancer	56
2.	Materials & Methods	
2.1.	Materials	58
2.1.1.	Human breast cancer cell lines	58
2.1.2.	siRNA selection and design	58
2.1.3.	Doxorubicin	59
2.2.	Design of the experiment	59
2.3.	Methods	62
2.3.1.	Cells and cell culture conditions	62
2.3.2.	Determination of the potential cytotoxicity of doxorubicin on	70
	cell lines using Sulphorhodamine - B assay	

2.3.3.	Transfection of cell lines with small interference RNA	73
2.3.4.	Detection of telomerase activity by telomeric repeat	82
	amplification protocol	
2.3.5.	Detection of cell viability by MTT assay	
2.3.6.	Detection of apoptosis through measuring caspase-3 and	
	caspase-8 activities	
2.3.6.1.	Caspase-3 activity 9	
2.3.6.2.	Caspase-8 activity 1	
2.3.7.	Visualization of morphologic changes by scanning electron	111
	microscopy in MCF-7 cell line	
3.	Results	
3.1.	Detection of inhibitory concentration 50 (IC ₅₀)	115
3.2.	Morphologic assessment by inverted microscope	117
3.3.	Relative telomerase activity percent	124
3.4	Cell surviving fraction percent	128
3.5	Caspase-8 activity	132
3.6.	Caspase-3 activity	135
3.7.	Correlation analysis	138
3.8.	Morphologic assessment by scanning electron	146
	microscopy in MCF-7 cell line	
4	Discussion	148
5	Summary	172
6	References	175
7	Arabic Summary	

Abstract

Telomerase activity is up regulated in most breast cancer subtypes but not in the adjacent normal tissues. Thus, it is a promising target for anticancer therapy. The present work investigated the effects of telomerase inhibition by siRNA on breast cancer cell lines and studied the feasibility of whether the combined effect of doxorubicin with siRNA treatment on breast cancer cells potentiates a rapid cellular response to the cytotoxic effect of chemotherapy. This study was performed on luminal A (MCF-7), triple negative (MDA-MB-468), and HER-2/neu (SKBR-3) human breast cancer cell lines, wherein telomerase activity inhibition by hTERT siRNA and doxorubicin was detected by using measuring telomerase activity telomeric repeat amplification protocol (TRAP assay), assessing cell viability through MTT assay, and evaluating apoptosis through scanning electron microscopy (SEM) and through estimating caspase-3 and -8 activities using enzyme-linked immunosorbent assay (ELISA). In the present study, hTERT siRNA effectively reduced telomerase activity and cell viability to more than 90% and 60%, respectively, in most breast cancer cell lines within 72 hours after transfection. The combination of hTERT siRNA and doxorubicin showed a cumulative effect compared with either treatment alone. Meanwhile, SEM demonstrated apoptotic morphologic cell changes. Telomerase inhibition is a promising strategy for the effective treatment of breast cancer. When used in combination with doxorubicin, it could potentiate the cytotoxic effect of the drug on breast cancer cells.

Keywords: telomerase- siRNA- doxorubicin- breast cancer.

List of Abbreviations

Abbreviated name	Full name
Ago	Argonaute
AIF	Apoptosis-inducing factor
ANOVA	Analysis of variance
APAF1	Apoptotic protease activating factor 1
ATCC	American type culture collection
ATM	Ataxia telangiectasia mutated
ATP	Adenosine triphosphate
Bad	BCL2 associated agonist of cell death
Bax	BCL-2-associated X protein
BCL2	B-cell lymphoma-2
ВН3	BCL-2 homology
BID	BH3 interacting-domain death agonist
BLAST	Basic local alignment search tool
BRCA1	Breast cancer 1
BRCA2	Breast cancer 2
CAD	Caspase-activated DNase
CDH1	E-cadherin
CICD	Caspase independent cell death
CIS	Carcinoma in situ
CK	Cytokeratin
CLDN	Claudin
CPP	Cell-penetrating peptide
DABSYL	4-(dimethylamine) azo benzene sulfonic acid
dATP	Deoxyadenosine triphosphate
DCIS	Ductal carcinoma in situ
DDR	DNA damage response
DISC	Death-inducing signaling complex
DMEM	Dulbecco's modified eagle medium
DMSO	Dimethyl sulphoxide
DR	Death receptor
EDTA	Ethylenediaminetetraacetic acid
EGF	Epidermal growth factor

EGFR	Epidermal growth factor receptor
EIO	European institute of oncology
ELISA	Enzyme-linked immunosorbent assay
ER	Estrogen receptor
ET	Energy transfer
FADD	Fas-associated protein with death domain
FAS	FS-7-associated surface antigen
FASL	Fas ligand
FBS	Fetal bovine serum
GAPDH	Glyceraldehyde 3-phosphate dehydrogenase
HER2	Human epidermal growth factor receptor 2
HRP	Horseradish peroxidase
HRT	Hormone replacement therapy
hTERC	Human telomerase RNA component
hTERT	Human telomerase reverse transcriptase
hTR	Human telomerase RNA
IBC	Inflammatory breast cancer
IC	Inhibitory concentration
IDC-NST	Invasive ductal carcinomas of no special type
IgG	Immunoglobulin G
ILC	Invasive lobular carcinoma
LSD	Least significant difference
MCF-7	Michigan cancer foundation-7
MBC	Metaplastic breast cancer
MDR1	Multidrug resistance
miRNA	Micro RNA
MLV	Murine leukemia virus
MOMP	Mitochondrial outer membrane permeabilization
MTT	3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium
	bromide
NADH	Nicotinamide adenine dinucleotide(NAD) + hydrogen (H)
NCBI	National center for biotechnology information
NCRP	National cancer registry program
NFS	Nanoparticle formation solution
NTC	No template control