

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Green Synthesis of Some Novel Bis-Heterocycles of Expected Biological Activity

Thesis Submitted by

Waleed Ahmad Mahmoud Ahmad El Enany

B.Sc. (Chemistry) 2003 M.Sc. (Chemistry) 2016

For the requirement of Ph. D. Degree of Science in Chemistry

Supervisors

Prof. Dr. Ahmed Kamel El-Ziaty

Prof. of Organic chemistry, Faculty of Science, Ain Shams University

Prof. Dr. Sobhy Mohamed Gomaa

Prof. of Organic Chemistry, Faculty of Science, Cairo University

Dr. Hanan Abdel Rahman Sallam

Lecturer of Organic chemistry, Faculty of Science, Ain Shams University

Dr. Rania Sayed Ali

Lecturer of Organic chemistry, Faculty of Technology and Education, Helwan University

To

Department of Chemistry
Faculty of Science, Ain Shams University
2021

Green Synthesis of Some Novel Bis-Heterocycles of Expected Biological Activity

By

Waleed Ahmad Mahmoud Ahmad El Enany

Thesis Advisors

Approved

Prof. Dr. Ahmed Kamel El-Ziaty

Prof. of Organic chemistry, Faculty of Science, Ain Shams University

Prof. Dr. Sobhy Mohamed Gomaa

Prof. of Organic chemistry, Faculty of Science, Cairo University

Prof. Dr. Hanan Abdel Rahman Sallam

Lecturer of Organic chemistry, Faculty of Science, Ain Shams University

Dr. Rania Sayed Ali

Lecturer of Organic chemistry, Faculty of Technology and Education, Helwan University

Head of Chemistry Department

Prof. Dr. Ayman Ayoub Abdel-Shafi

إبسم اللَّهِ الرَّحْمَانِ الرَّحِيمِ

فَأُمَّا الزَّبَدُ فَيَذْهَبُ جُفَاءً وَأُمَّا مَا يَنفَعُ النَّاسَ فَيَمْكُثُ فِي الأرْضِ

> صَدَقَ اللهُ العَظيم [الرعد 17]

Acknowledgment

First of all, I would like to thank ALLAH that this work has been completed.

I am greatly indebted to **Prof. Dr. Ahmed Kamel El-Ziaty**(Professor of Organic Chemistry, Faculty of Science, Ain Shams
University) for his continuous help and encouragement through
the work.

I am deeply grateful to **Prof. Dr. Sobhy Mohamed Gomaa**(Professor of Organic Chemistry, Faculty of Science, Cairo

University) for suggesting and directing the research work, and
for continuous guidance advice, help and valuable criticism.

I am grateful my supervisor **Dr. Hanan Abdel Rahman Sallam**(Lecturer of Organic chemistry, Faculty of Science, Ain Shams
University) and **Dr. Rania Sayed Ali** (Lecturer of Organic chemistry, Faculty of technology and Education, Helwan University).

I cannot thank my family enough for their encouragement, and counsel. I am highly indebted to them who taught me everything.

Waleed El Enany

Aim of the work

The interest in these bis-heterocycles is due to its powerful biological activity than the mono-heterocyclic analogs. Furthermore, many derivatives of bis-pyrazole and bis-thiadiazole have pharmaceutical, agrochemical and many other applications, including antibacterial, fungicidal, tuberculostatic, antiamoebial and plant development regulatory properties.

Some reports showed that several 1,3,4-thiadiazole derivatives have potential antihypertensive activity. Which led us to synthesis of a new series of *bis*-thiadiazoles as anti-hypertensive α -blocking agents.

After all of the above, we had to use green chemistry for synthetic some novel *bis*-thiazoles and *bis*-thiadiazoles by using cross-linked chitosan (CLCS) and its MWCNTs (CLCS/MWCNTs) composite as ecofriendly biocatalyst.

Content

Abstract

List of figures / tables

English Summary

I. Introduction	1
I.1. Green chemistry	1
I.1.1.A. Nanotechnology	2
I.1.1.B. Carbon nanotubes (CNTs), multi-walled anotubes (MWNT)	4
I.1.1.C. Sonochemistry (Ultrasound)	5
I.2. Synthesis of Some bis-heterocyclic compounds prepared from bis-	
acid hydrazides	6
I.2.1. Synthesis terephthalic acid hydrazide	6
I.2.1.1. From polymers	6
I.2.1.2. From dimethyl terephthalate	7
I.2.1.3. From diethyl terephthalate	7
I.2.1.4. From oxadiazoles	8
I.2.1.5. From terephthaloyl dichloride	8
I.2.1.6. From terephthalic acid	9
I.2.2. Synthesis Isophthalic acid hydrazide	.9
I.2.2.1. From oxadiazoles	9
I.2.2.2. From Diethyl isophthalate	9
I.2.2.3. From Dimethyl isophthalate	0
I.2.2.4. From isophthaloyl dichloride 1	.0
I.2.3. Synthesis of phthalohydrazide, from 1,3-dioxoisoindolines 1	0

I.2.4. Synthesis of bis (benzoylhydrazide) 4',4"-o-terphenydicarboxylic	
acid, from 4,4'-o-terphenyldicarbonyl dichlorid 1	11
I.2.5. Synthesis of 4,4-dihydrazidediphenyldimethylsilane, from p-	
chlorotoluene	12
I.2.6. Synthesis of 5-tert-butyl-isophthalic dihydrazide, from 4-(tert-	
butyl) benzoic acid	12
I.2.7. Synthesis of 2,5-bis(decyloxy)-terephthalohydrazide, from 2,5-	
dihydroxyterephthalic acid	13
I.2.8. Synthesis of 3,4-diaminothieno[2,3-b]thiophene-2,5-	
dicarbohydrazide, from diethyl thieno[2,3-b]thiophene-2,5-	
dicarboxylate	14
I.2.9. Synthesis of 3,4-di(1H-pyrrol-1-yl)thieno[2,3-b]thiophene-2,5-	
dicarbohydrazide, diethyl thieno[2,3-b]thiophene-2,5-	
dicarboxylate	14
I.2.10. Synthesis 2,20-((((Phenylazanediyl)bis(ethane-2,1-diyl))bis(4-	
phenyl-4H-1,2,4-triazole-5,3-diyl))bis(sulfanediyl))di(aceto-	
hydrazide), from bis-phenyltriazolesulfaneylacetate	14
I.2.11. Synthesis of 2-(2-hydrazino-2-oxoethyl)-3-furohydrazide, from	
dimethyl acetonedicarboxylate	15
I.3. Chemical reactions of <i>bis</i> -acid hydrazides	16
I.3.1. Chemical reactions of terephthalic acid	16
I.3.1.1. Reaction with aldehydes (Schiff's base formation)	16
I.3.1.2. Condensation with aromatic aldehydes in the presence of	
POCl ₃	17
I.3.1.3. Reaction with diketones (Schiff's base formation)	18
I.3.1.4. Reaction with amidine	19
I.3.1.5. Reaction with carbon disulfide	20

I.3.1.6. Reaction with isocyanates and isothiocyanates	22
I.3.1.7. Reaction with aromatic acid	24
I.3.1.8. Reaction with salicylaldehyde derivatives	24
I.3.1.9. Reaction with methoxyacridine	25
I.3.1.10. Reaction with ethyl orthoformate	25
I.3.1.11. Reaction with benzoyl chloride derivatives	26
I.3.1.12. Reaction with pyridinecarboxaldehyde	26
I.3.1.13. Reaction with carboxonium salts	27
I.3.1.14. Reaction with acid chloride five-member ring	28
I.3.1.15. Reaction with malic anhydride	29
I.3.1.16. Reaction with carbonyl (ligand form)	30
I.3.1.17. Reaction with STB	32
I.3.1.18. Reaction with acid (Acid-base equilibria)	32
I.3.1.19. Reaction with diacid dichloride	33
I.3.2. Chemical reactions of isophthalic acid hydrazide	34
I.3.2.1. Reaction with aromatic aldehyde	34
I.3.2.2. Reaction with carbonyl (ligand form)	35
I.3.2.3. Reaction with carbon tetrabromide	35
I.3.2.4. Reaction with methyl 4-(chlorocarbonyl) benzoate	36
I.3.2.5. Reaction with cyanogen bromide	37
I.3.2.6. Reaction with diacid dichloride	38
I.3.3 Chemical reactions of bis (benzoylhydrazide) 4',4"-o-	
terephenydicarboxylic acid, Reaction with acetonitrile	39
I.3.4. Chemical reactions of 4,4-dihydrazidediphenyldimet	hylsilane,
reaction with 4-maleimido benzoic acid chloride	40
I.3.5. Chemical reactions of 2,5-bis(decyloxy)terephthalohydrazio	de,
reaction with 5,5-dicarbonyl chloride-2,2'-bipyridine	40

I.3.6.	Chemical	reactions	of 3,	.4-diam	inothi	eno[2,3	-b]thiopl	nene-2,5-
	dicarbo-h	ydrazide						41
1.3.6	.1. Reaction	n with acety	l aceto	ne				41
1.3.6	.2. Reaction	n with ethyl	acetoa	acetate				41
1.3.6	.3. Reaction	n with aceti	c anhyd	dride				42
1.3.6	.4. Reaction	n with form	ic acid					42
1.3.6	.5. Reaction	n with 2-(dii	mercap	tometh	nylene)	malono	nitrile	43
1.3.6	.6. Reaction	n with (E)-e	thyl 2-	cyano-3	3-merca	apto-3-((phenylai	mino)-
	acrylat	e					•••••	43
I.3.7.	Chemical r	eactions o	f 3,4-d	i(pyrro	ol- l'-yl)thieno	(2,3-b)th	iophene-
	2,5-dicarb	ohydrazido	e, Rea	action	with	nitrou	s acid	(Curtius
	rearrange	ment)						43
1.3.8.	Chemical re	eactions of	3,3'-(p	henyla	zanediy	yl)di (pr	opane-	
	hydrazid	le)						44
1.3.8	.1. Reaction	n with isocy	anates	derivat	tives			44
1.3.8	.2. Reaction	n with isoth	iocyana	ate				45
1.3.9.	Chemical re	eactions of	2,2'-(((((25,55)-2,5-d	imethy	l-3,6-iox)-
	piperazino	e-2,5-diyl)b	is(met	hylene))bis(4,	1-phen	ylene))bi	s(oxy))
	di(acetoh	ydrazide)						46
1.3.9	.1. Reactior	n with carbo	on disul	lfide				46
1.3.9	.2. Reaction	n with hexa	ne-2,5-	-dione .				47
1.3.9	.3. Reaction	n with phen	yl isoth	niocyan	ate			47
I.3.10	. Chemi	cal reac	tions	of	2-(2-	Hydrazi	no-2-oxo	ethyl)-3-
	furohydra	azide, re	action	with	sod	lium	nitrite	(Curtius
	rearrange	ement)						48

I.3.11. Chemical reactions of phthalohydrazide, reaction with pyridin	ne-
carboxaldehydes	49
I.3.12.Chemical reactions of 3,3'-(arylazanediyl)di(propanehydrazide).	50
I.3.12.1. Reaction with carbon disulfide	50
I.3.12.2. Reaction with isocyanate or isothiocyanate derivatives	51
2. Results and discussion	52
Part 1	
2.1. Synthesis and molecular docking of some new bis-thiadiazoles	as
anti-hypertensive α-blocking agents	52
2.1.1. Pharmacological screening	
2.1.2. Molecular docking	59
<u>Part 2</u>	
2.2. Synthesis and biological evaluation of some novel bis-thiadiazoles	as
antimicrobial and antitumor agents	63
2.2.1. Biological activity	66
2.2.1.A. Antibacterial Evaluation	66
2.2.1.B. Antifungal Evaluation	68
2.2.1.C. Cytotoxic Activity	71
Part 3	
2.3. Cross-linked chitosan/MWCNTs composite as ecofriendly biocatalyst for synthesis of some novel bis-thiazoles and	
bis-thiadiazoles	
2.3.1. Preparation of CLCS and CLCS/MWCNTs composite	
2.3.2. Thermal stability of the CLCS and CLCS/MWCNTs composite	
2.3.3. Synthesis of bis-thiazoles	
2.3.4. Synthesis of bis-thiadiazoles	
3. Experimental	86

3.1. Synthesis and molecular docking of some new bis-thiadiazoles
as anti-hypertensive α -blocking agents 8
3.1.1. Synthesis of bis-1,3,4-thiadiazole derivatives (214, 218 _{a-e} , 223 _a
and 228) 8
3.1.2. Pharmacological assay
thiadiazoles as antimicrobial and antitumor agents 9
3.2.1. Synthesis of 1,3,4-thiadiazoline derivatives $232_{a,b}$, 234_{a-d} an
236 _{a-d} 9
3.2.2. Biological evaluation 9
3.3. Cross-linked chitosan/MWCNTs composite as ecofriendl
biocatalyst for synthesis of some novel bis-thiazoles and bis-
thiadiazoles
thiadiazoles
3.3.1. Methods

Abstract

Bis-thiadiazole derivatives were synthesized in high yield *via* the reaction of 2,2'-terephthaloyl bis(N-phenylhydrazinecarbothioamide) with a variety of hydrazonoyl chlorides in ethanol containing catalytic amounts of TEA. The molecular docking of the most active derivative 15b against the human dopamine D3 receptor was performed by the Molecular Operating Environment (MOE 2014. 0901) program. Moreover, a novel series of bis(1,3,4-thiadiazole) derivatives were synthesized as a sole product in one step methodology by reaction of bis-hydrazonoyl chloride with many of hydrazinecarbodithioate derivatives **214**, **218**_{a-e}, **223**_{a-e} **and 228**. Compounds **234**_c, **236**_d, **232**_b and **234**_d were the most active (IC₅₀ values of 0.37 ± 0.15 , 0.93 ± 0.32 , 1.03 ± 0.45 and 3.52 ± 0.43 µg/mL, respectively) against human breast carcinoma cell line (MCF-7) and compounds **234**_c, **236**_d, **232**_b and **234**_d were the most active (IC₅₀ value of 0.38 ± 0.12 , 0.88 ± 0.46 , 0.46, 0

To reach what we want from that study, we have aminohydrazide Cross-Linked chitosan (CLCS) and its MWCNTs (CLCS/MWCNTs) composite as ecofriendly biocatalysts for synthesis of some novel bis-thiazoles and bis-thiadiazoles. CLCS/MWCNTs composite was characterized by a greater surface area and a higher thermal stability than CLCS. Thus, CLCS/MWCNTs composite was served as a powerful ecofriendly basic biocatalyst under ultrasonic irradiation in the synthesis of three novel series of 1,2-bis(2-(4-methyl-5-(aryldiazenyl)thiazol-2-yl)hydrazono)-1,2-diphenylethane **241**_{a-g}, 2,2'-(2,2'-(1,2-diphenylethane-1,2-diylidene)bis-(hydrazin-1-yl-2-ylidene))-bis(5-(2-arylhydrazono)thiazol-4(5H)-one) **244**_{a-e} and 1,1'-(5,5'-((1,2-diphenylethane-1)-4(5H)-one)