

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Audio-Visual Trajectory Planning in Dynamic Environment and Navigation Assist System for Autonomous System

A Thesis submitted in the Partial Fulfillment for the Requirement of the Degree of PhD in Mechanical Engineering

By

Mohamed Atef Awad-Alla Hassan

MSc in Mechanical Engineering 2009

Supervised by

Prof.Dr. Farid A. Tolbah

Ain Shams University

Prof. Dr. Moatasem A. Shahin

Badr University

Assoc. Prof. Dr. Mohamed A. Abdelaziz

Ain Shams University

Cairo (2021)

Name: Mohamed Atef Awad-Alla Hassan

Thesis Title: Audio-Visual trajectory Planning in Dynamic Environment and Navigation Assist

System for Autonomous System

Degree: Doctor of Philosophy in Mechanical Engineering c

JUDGMENT COMMITTEE

Name, Title and Affiliation	Signature
Prof. Dr. Yehia Hendawy Hossameldin	
Chairman of Mechanical Engineering Department	
Faculty of Engineering and Technology, Future University in Egypt (FUE)	
Prof. Dr. Sherif Aly Hammad	
Chairman of Mechatronics Department	
Faculty of Engineering, Ain Shams University	
Prof. Dr. Moatasem A. Shahin	
Chairman of Mechatronics Department	
Faculty of Engineering and Technology, Badr University in Cairo	
Assoc. Prof. Dr. Mohamed A. Abdelaziz	
Chairman of Automotive Engineering Department	
Faculty of Engineering, Ain Shams University	

Curriculum Vitae

Name of the researcher : Mohamed Atef Awad-Alla Hassan

Date of Birth : 29 / 11 / 1970

Place of Birth : Cairo

Nationality : Egyptian

Last Degree : MSc in Mechanical Engineering

University :Military Technical College

Certification Date : May 2009

Name : Mohamed Atef Awad-Alla Hassan

Signature :

Date : 2021

Statement

This dissertation is submitted to Ain Shams University in partial fulfillment of the degree of Doctor of Philosophy in Mechanical Engineering.

The work included in this thesis was carried out by the author at the department of Mechatronics, Faculty of Engineering, Ain Shams University, Cairo, Egypt.

No part of this thesis was submitted for a degree or qualifications at any other university or institution.

Name : Mohamed Atef Awad-Alla Hassan

Signature :

Date : / / 2021

Acknowledgment

First and foremost, I thank ALLAH (God), the creator, for having made everything possible by giving me strength and courage to do this work. We have no knowledge except whatever he has taught us. He is the all-knowing, the all wise.

Though only my name appears on the cover of this dissertation, a great many people have contributed to its production. I owe my gratitude to all those people who have made this dissertation possible.

I would like to express the deep appreciation to the soul of Dr. Magdy M. Abd-Elhameed who started this work and the soul of Dr. Farid A. Tolbah for his vulnerable helps in many aspects of my research.

I wish to express my thanks to Dr. Moatasem A. Shahin, Dr. Mohamed A. Abd-Elazez for their valuable guidance, continuous help, decent supervision and discussion during the time of this research. I would say, the success of this thesis would not have been possible without them.

My deepest gratitude is to my colleagues, Particularly, Dr. Ahmed Saif, Eng. Ahmed A. Elragaby, Eng. Ahmed Hamdy and Eng. Michael S. Hannalla for their valuable help throughout the phases of the work.

Most importantly, none of this would have been possible without the love and patience of my family. I would like to express my love and gratitude to my mother, I am thankful to you for your inspiration and encouragement.

Also, I would like to thank my wife and my children, for their patience and their support, and for the sacrifices they had to make. Their continuous support and encouragement are key ingredients for any achievements I have ever made.

Finally, a special dedication to the memory of my father, a great man whom I still miss every day.

List of Publications

- 1. M. A. Awad-Allah, M. A. Abdelaziz, M. A. Shahin and F. A. Tolbah "A modified Sampling Method for Localization Accuracy Improvement of Monte Carlo Localization". *18th International Conference on Applied Mechanics and Mechanical Engineering*, Military Technical College, 3-5 April, 2018.
- 2. M. A. Awad-Allah, A. Hamdy, M. A. Abdelaziz, M. A. Shahin and F. A. Tolbah "A two-stage approach for passive sound source localization based on the SRP-PHAT algorithm," *APSIPA Transactions on Signal and Information Processing*, Cambridge University Press, 9, p. e8, 2020.

Abstract

Autonomous systems pose several opportunities and challenges at the same time in many

civilian and military applications. Auditory system is an essential ingredient in robotics and

Sound Source Localization (SSL) is an important part of such system. Such system may

become essential when other sensing systems (vision for example), are impaired due to bad

lighting conditions or any other reason. The auditory system is even expected to be

economical and small enough to fit on the robot which adds more difficulties to the

constraints of accuracy and robustness.

In this work, a two-stage approach to the acoustic localization problem is suggested. The

aim is to minimize the search area for the SRP-PHAT algorithm and increase the reliability

and accuracy of the localization system especially when using low cost compact

microphone array. The search area is minimized by estimating the Direction of Arrival

(DoA) of the acoustic location and then forming a boundary around this estimated DoA

according to the confidence level of this estimation along with the range of the microphone

array.

The Root Mean Square Error (RMSE) obtained with the proposed approach is lower than

SRP-PHAT algorithm in more than 90% of the cases. The results obtained also proved that

the proposed approach is successful even when only 1000 search points are used instead of

125000 points in case of the conventional algorithm, which greatly reduces the time of

calculations to be less than 1% of time taken with conventional algorithm.

This means that the proposed approach develops a robust, accurate, computationally non-

intensive SSL system that can be used on a mobile robot to find the coordinates of a sound

source in an indoor environment using a small microphone array. Navigation to that source

is thus made through optimal trajectory planning and avoiding static as well dynamic

obstacles after the robot is equipped with all needed of hardware and software. The

complete set presents a safe and reliable autonomous system.

Key words: Sound localization, Autonomous system, Robot navigation, Face detection.

i

Table of Contents

CHAPTER 1	1
INTRODUCTION	1
1.1 Overview	1
1.2 Motivations	2
1.3 Research Objective	3
1.4 Thesis Contribution	3
1.5 Thesis Outline	4
CHAPTER 2	5
LITERATURE REVIEW	5
2.1 Mobile Robot	5
2.2 Robot Navigation	5
2.3 Motion Planning Classification	6
2.3.1 Path Planning	7
2.3.2 Obstacle Avoidance	8
2.4 Simultaneous Localization and Mapping (SLAM)	11
2.5 Robot Motion	12
2.6 Audio-Visual Perception	13
2.7 Vision Target Detection	14
2.7.1 Evolution of Image Recognition	14
2.7.2 Convolutional Neural Network (CNN)	15
2.7.3 CNN for Image Classification	15
2.7.4 General Object Detection Model	16
2.7.5 Unified Detection Model – YOLO	16
2.7.6 Scale Invariant Feature Transform (SIFT)	17
2.7.7 Boosted Cascade Classifiers of Simple Features Object Detection	18
2.8 Robotics Audio Systems	19
2.8.1 Sound Source Localization (SSL)	21
2.8.2 The Evolution of SSL	21
2.9 Categories of Sound Source Localization	22
2.9.1 Time Difference of Arrival (TDOA)	23
2.9.2 Multiple Signal Classification (MUSIC)	25
2.9.3 Beamforming	27

2.10 Voice Command Recognition	30
2.11 Summary	31
CHAPTER 3	32
PROPOSED TARGET DETECTION AND LOCALIZATION B	ASED ON ACOUSTIC
APPROACH	32
3.1 Introduction	32
3.2 Proposed Localization Approach	33
3.3 Direction of Arrival (DoA) in the closed form	35
3.4 The SRP-PHAT Algorithm	37
3.5 SSL Proposed Approach Program	38
3.6 Validation of the Proposed Approach	42
3.7 Experiments Settings	42
3.8 Results	45
3.9 Results analysis	53
CHAPTER 4	54
ROBOT DESIGN AND IMPLEMENTATIONS	54
4.1 System Definition	54
4.2 Electrical System	54
4.2.1 Sensors	54
4.2.2 Actuators	57
4.2.3 Controllers	58
4.2.4 Power Supply	59
4.3 Mechanical System	60
4.3.1 Mechanical Requirements	60
4.3.2 Kinematic and Dynamic Principles	61
4.4 Hardware Implementation	62
4.4.1 Robot Chassis	62
4.4.2 Robot Floors	62
4.4.3 Robot Modelling and Assembly	64
4.5 Software System	65
4.6 Navigation System Architecture	66
4.7 Audio Algorithm	67
4.7.1 Voice Command Recognition	68

4.7.2 Sound Source Localization	73
4.7.3 Main LabVIEW Audio Program	73
4.8 Navigation Algorithm	75
4.8.1 Mapping	76
4.8.2 Localization	77
4.8.3 Path planning	78
4.8.4 Path Tracking	80
4.9 Visual Algorithm	81
4.10 ROS Software Architecture	82
4.11 System Integration	85
4.12 Experimental Tests and Analysis	87
4.12.1 Testing Performance of Auditory System	87
4.12.2 Testing Performance of Path Planning and Obstacle Avoidance System	90
4.12.3 Testing Performance of Path Tracking System	91
4.12.4 Testing Performance of Visual System	91
CHAPTER 5	95
CONCLUSION AND FUTURE WORK	95
5.1 Conclusions	95
5.2 Recommendations and Future Works	96
REFERENCES	98

List of Symbols

c	Sound speed
М	Microphone array
m	Microphone location
N	Number of sample point
n	Wheel rpm of robot
r	Acoustic range of the microphone array
$S_i(\omega)$	Acoustic signal in the frequency domain of microphone i
$S_i(\tau)$	Acoustic signal in the time domain of microphone i
\vec{u}	Unit direction vector
v	Longitudinal velocity of robot
W	Wheel base of robot
x	x-axis
y	y-axis
Z	z-axis
ε_1	Gaussian noise of DoA in azimuth
ε_2	Gaussian noise of DoA in elevation
σ_1	Standard deviation of DoA in azimuth
σ_2	Standard deviation of DoA in elevation
$\widehat{ heta}$	True DoA azimuth angle
$\hat{\phi}$	True DoA elevation angle
θ	Estimated DoA azimuth angle
φ	Estimated DoA elevation angle
$ au_{ij}$	Time difference of sound between microphone i and microphone j

Fourier Transform

 \mathcal{F}^{-1} Inverse Fourier Transform

 ψ_{PHAT} PHAT weighting function

 γ Wheel angle of robot

f Sound frequency

λ Wave length

 ρ Wheel diameter of robot

 ω Yaw rate of robot