

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Ain Shams University Faculty of Science

Novel Zinc Oxide Nano Photocatalysts for Simulated Wastewater Treatment

A thesis Submitted to

Chemistry Department
Faculty of Science-Ain Shams University
As a partial fulfillment of the requirements for the Master degree of Science
(Chemistry)

By

Ezzelregal Mohamed Ezzelregal Mohamed Elsayed
B. Sc. Chemistry, Faculty of Science, Ain-Shams University (2017)

Supervised By

Prof. Dr. Zeinab M. A. Abou-Gamra Professor of physical Chemistry, Faculty of Science, Ain Shams University Prof. Dr. Mohamed Abdel-Hay Ahmed
Professor of physical Chemistry ,
Faculty of Science, Ain Shams
University

Prof. Dr. Michel Fahmy Abdel-Messih
Professor of physical Chemistry,
Faculty of Science, Ain Shams
University

(2021)

Ain Shams University Faculty of Science

Approval Sheet for Submission

A Thesis Title

Novel Zinc Oxide Nano Photocatalysts for Simulated Wastewater Treatment

Submitted by
Ezzelregal Mohamed Ezzelregal Mohamed Elsayed
(Chemistry), 2017
B. Sc. Chemistry, Faculty of science Ain-Shams University (2017)

As a partial fulfillment of the requirements for the Master degree of Science (Chemistry)

Supervisor committee has approved this thesis Supervisors

Prof. Dr. Zeinab Mohamed Ahmed Abou-Gamra	
Prof. of physical Chemistry, Faculty of Science, Ain Shams University	
Prof. Dr. Mohamed Abdel-Hay Ahmed	
Prof. of physical Chemistry, Faculty of Science, Ain Shams University	
Prof. Dr. Michel Fahmy Abdel-Messih	
Prof. of physical Chemistry, Faculty of Science, Ain Shams University	

Date of Examination: / /2021

Head of Chemistry Department **Prof. Dr. Ayman Ayoub Abdel-shafi**

•••••

Ain Shams University Faculty of Science

Novel Zinc Oxide Nano Photocatalysts for simulated wastewater Treatment

By

Ezzelregal Mohamed Ezzelregal Mohamed Elsayed B. Sc. (Chemistry), 2017

DATE OF EXAMINATION: / /2020

This thesis for a Master degree has approved by:

Prof. Dr. Zeinab Mohamed Abou-Gamra
Professor of physical chemistryFaculty of science- Ain Shams University

Prof. Dr. Mohamed Ahmed Abdel-Hay
Professor of physical chemistryFaculty of science- Ain Shams University

Prof. Dr. Tarek Abdel-monem Ibrahim
Professor of physical chemistryFaculty of science- Tanta University

Prof.Dr. Iman Youssef El-Sherif
Professor of Water chemistryenvironmental research - National Research Centre

Head of chemistry Department **Prof. Dr. Ayman Ayoub Abdel-Shafi**

.....

Acknowledgement

First of all, I would like to thank Allah for helping me to complete my research work successfully.

I would like to thank my supervisor **D. Zeinab Abou Gamra**, professor of physical chemistry, Faculty of science, Ain shams university, for her great effort during the practical part of this thesis. She was in continuous contact with me at every moment. Indeed, no one can do what she has done. Her guidance helped me in all the time of research and during writing the Master thesis. Her valuable instructions motivated and taught me how to be a student who seeks scientific study and knowledge. She was, and remains, the best teacher and the best leader.

I would like to thank my supervisor **D. Mohamed Abdel-Hay,** professor of physical chemistry, Faculty of science, Ain Shams University, for his continuous encouragement and learning me a lot. I thank him very much for providing all the possible means to complete this work.

Also, I would like to thank my supervisor **D. Michel fahmy Abdel-Messih,** professor of physical chemistry, Faculty of science, Ain shams university, for his encouragement during the achievement of this work.

I would like to dedicate my gratitude to my labmate Mahmoud Adel for helping me in performance of experiments and his encouragement.

My deepest gratitude is dedicated to my classmate Mostafa El-Saady, for his support and encouragement. My deepest gratitude, from my heart is dedicated to my family, father, mother, brother and sisters for their support and continuous encouragement during this work.

English summary

Pollution in general and water pollution in particular are among the most important problems facing the environment. This pollution has caused by the urgent need for industry due to the steady increase in the population therefore; most scientific research concerned with this problem. In recent years, ZnO is the most important photocatalyst, due to its non -toxicity, availability, stability, photocatalytic activity and cheapness. Unfortunately, it has two disadvantages. The first one, is fast recombination of electronhole. Second, large energy gap (3.37 eV) causing its photocatalytic activity limited in UV region of solar light spectrum which represents 2-3%. Several methods have been used to overcome these disadvantages, including metal doping, and non-metal doping, and the coupling of another semiconductor with a low energy difference such as CuO. In the first part of this thesis, a pure Zinc oxide was prepared by aqueous sol-gel method to test its activity under UV-A irradiation in degradation of fluorescein dye as a model for anionic dyes. Some of the parameters that affect the photocatalytic activity of zinc oxide, such as pH, zinc oxide dose, and the fluorescein dye concentration, are studied. In addition, different scavengers are used to identify the most active species in photodegradation process, and the mechanism of photodegradation of fluorescein dye using ZnO is suggested.

In the second part, copper oxide was coupled with zinc oxide semiconductor at different rates (0.5%, 1%, and 2%) to improve the photocatalytic activity of zinc oxide to be active under visible light. It is found that the best ratio of copper oxide to be coupled with ZnO is 1% for degradation of the fluorescein and rhodamine B dyes exist in the

contaminated water under visible irradiation. In addition, some parameters that affect photocatalytic activity are also studied like pH, CuO/ZnO dose, scavenger, and dye concentration effect. Moreover, a real textile dye (reactive black B) was used as real wastewater pollutant, which is extracted from the dying bath directly after the dying process, and was used to identify activity of zinc oxide and 1% CuO/ZnO under visible light.

The skeleton of the thesis is divided into four chapters:

Chapter1: Introduction

This chapter involves the problem of pollution, especially water pollution and its dangerous effect on human beings. The traditional and advanced methods for wastewater treatment are included. In addition, several methods of preparation of nanoparticles are presented, and at the end of this chapter a recent literature survey at scope of the thesis works was presented.

Chapter2: Experimental

This chapter contains detailed description of chemicals, experimental conditions and method of preparation of ZnO and CuO/ZnO nanoparticles. Also, this chapter includes the apparatus are used in characterization.

Chapter 3: Results and discussion

This chapter involves the explaination of experimental results and physicochemical characterizations of as-prepared photocatalyst

nanoparticles. Also, the mechanism of photodegradation process is

involved.

Chapter4: Conclusion

Finally, in this chapter, the summary of our presented work and future

trends are included.

Appendix 1,2: Includes all kinetic data

Appendix 3: Published paper.

IV

Table of Contents

Acknowledgement	I
English summary	II
List of figures	X
List of tables	XIV
List of abbreviations	XVI
Abstract	XIX
Chapter I	1
Introduction	1
1.1. Water pollution	2
1.2. Wastewater resources	2
1.3. Water remediation approaches	3
1.3.1. Traditional methods	3
1.3.2. Advanced oxidation processes (AOPs)	4
1.4. Overview on a semiconductor as a photocatalyst	6
1.5. Mechanism of photocatalytic degradation process	8
1.6. Zinc oxide (ZnO)	9
1.6.1. Properties of ZnO	9
1.6.2. Crystalline forms of ZnO	10
1.6.3 Applications of ZnO	11
1.7. Limitations of Zinc oxide (ZnO) as photocatalyst	12
1.8. Preparation methods of ZnO nanoparticles	13
1.8.1. The electrospinning technique	13
1.8.2. Solid phase method (thermal decomposition)	14
1.8.3. Liquid phase method	15
1.8.3.1. Sol-gel method	15
1.8.3.1.1. Aqueous sol-gel method	16
1.8.3.1.2. Non-aqueous sol-gel method	17
1.8.3.2. Solvothermal and hydrothermal method	18
1.8.3.3. Microwave (MW)-assisted method.	19

1.8.3.4. Sonochemical method	20
1.8.3.5. Precipitation method.	21
1.8.4. Gas phase method	21
1.8.4.1. Chemical vapor deposition method, CVD.	21
1.8.4.2. Physical vapor deposition method , PVD	22
1.9. Modification of Zinc oxide (ZnO) as a photocatalyst in visible region	23
1.9.1. Doping	23
1.9.1.1. Metal doping	24
1.9.1.2. Non-metal doping.	25
1.9.2. Sensitization.	27
1.9.3. Semiconductor coupling.	29
1.10. Literature survey .	33
1.10.1. Zinc Oxide.	33
1.10.2. Copper oxide / Zinc Oxide coupling	36
1.11. Thesis objectives.	41
Chapter II	43
Experimental	43
2.1. Chemicals.	44
2.2. Preparation methods.	45
2.2.1. Preparation of ZnO by aqueous sol-gel route.	45
2.2.2. Preparation of CuO/ZnO by aqueous sol-gel route	45
2.3. Techniques used for characterization.	46
2.3.1. X-ray diffraction (XRD).	46
2.3.2. UV-Vis. Diffuse reflectance spectroscopy (DRS)	46
2.3.3. Scanning electron microscopy (SEM).	47
2.3.4. High resolution transmission electron microscopy (HR-TEM)	47
2.3.5. Energy dispersive X-ray (EDX).	47
2.3.6. X-rays photoelectron spectroscopy (XPS).	47
2.3.7. Adsorption isotherms, surface area, and pore size distribution	48
2.3.8. Fourier transform infrared spectroscopy (FTIR).	48

2.3.9. Photolumenescence (PL)	48
2.4. Photoactivity measurments.	48
2.5. Total organic carbon (TOC) measurement	49
2.6. Recycling of photocatalysts	49
2.7. Determination of the order of photodegradation Process	50
2.7.1. Graphical method.	50
2.7.2. Differential method	50
2.8. Factors affecting the photodegradation reactions	51
2.8.1. Catalyst dose.	51
2.8.2. Initial dye concentration.	51
2.8.3. pH effect of the dye.	52
2.8.4. Scavenging effect	52
2.8.5. inorganic additives.	52
2.9. Determination of point zero charge of CuO/ZnO photocatalyst by pH o	
Chapter III	54
Results and Discussion	54
Part 1.	55
Synthesis of novel ZnO nanoparticles with exceptional crystalline and photocatalytic features toward recalcitrant pollutant: Fluorescein dye	55
3.1.1. Physicochemical characterizations.	
3.1.1.1. XRD measurements.	
3.1.1.2. Optical properties	
3.1.1.2.1. UV-Vis. Diffuse reflectance spectroscopy, DRS	
3.1.1.2.2. Photoluminescence, PL.	
3.1.1.3. Morphology and textural properties	
3.1.1.3.1. Field emission scanning electron microscopy, FE-SEM	
3.1.1.3.2. Transmission electron microscopy, TEM.	
3.1.1.4. Textural characterization.	
3.1.1.5. Chemical composition.	61

.1.1.5.1. Fourier transform infrared, FTIR	61
	62
3.1.1.5.3. X-ray photoelectron spectroscopy, XPS	62
3.1.2. Photocatalytic activity of the prepared catalyst toward degrad	
fluorescein dye	64
3.1.2.1. Factors affecting photodrgradation of fluorescein dye	66
3.1.2.1.1. Effect of pH of the medium	66
3.1.2.1.2. Effect of catalyst dose.	69
3.1.2.1.3. Effect of fluorescein dye concentration	70
3.1.2.1.4. Effect of scavengers.	71
3.1.3. Photocatalytic degradation mechanism	72
3.1.4. Mineralization (TOC measurements)	74
3.1.5. Recycling of ZnO photocatalyst.	75
Part 2.	77
Enhancement of the photocatalytic efficiency of ZnO by coupling v	
3.2.1. Optimization of CuO % over ZnO nanoparticles	
3.2.2. Physicochemical characterizations	79
3.2.2.1. XRD analysis	79
3.2.2.2. Optical properties	80
3.2.2.2.1. UV-Vis. diffuse reflectance spectroscopy, DRS	80
3.2.2.2. Photoluminescence (PL)	81
3.2.2.3. Morphology and textural properties	82
3.2.2.3.1 FE-SEM.	82
3.2.2.3.2. HR-TEM	83
3.2.2.3.3. Surface parameters, BET surface area	84
3.2.2.4. Chemical composition.	86
3.2.2.4.1. FTIR analysis	86
3 2 2 4 2 Energy dispersive x-ray (FDX)	87

photocatalyst.	22
•	
3.2.4. Photoactivity of 1%CuO/ZnO toward fluorescein dye	
3.2.4.1. Factors affecting photodegradation of fluorescein dye solution of 1% CuO/ZnO under visible irradiation.	•
3.2.4.1.1. Effect of pH of medium.	90
3.2.4.1.2. Effect of catalyst dose.	91
3.2.4.1.3. Effect of initial fluorescein dye concentration.	92
3.2.4.1.4. Effect of irradiation time on TOC.	95
3.2.4.1.5. Effect of scavengers.	96
3.2.4.1.6. Effect of inorganic additives (H ₂ O ₂ , KBrO ₃ , (NH ₄) ₂ S ₂ O ₈ , NaCl, an Na ₂ CO ₃).	
3.2.5. Photocatalytic degradation mechanism	
3.2.6. Recycling and reusability of 1% CuO/ZnO photocatalyst	
3.2.7. Photoactivity of ZnO and 1% CuO/ZnO toward degradation of rhodamine B dye solution under visible irradiation.	
3.2.8. Photocatalytic activity of ZnO and 1% CuO/ZnO toward mixture of fluorescein and rhodamine B under visible irradiation.	
3.2.9. Photodegradation of real textile dye (reactive black B or RB 5) dye ZnO, 1% CuO/ZnO under different light sources	_
Chapter IV	112
Conclusions and future trends	112
4.1. Conclusions.	113
4.2. Future trends	113
References	114
Appendix: A1	137
Kinetics data	137
Appendix: A2	143
Kinetics data	143
Appendix A3	152
Published paper	152