سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

EFFECT OF ADDITIVES ON ELECTRIC PROPERTIES OF ZnO-VARISTORS

Presented By

Osama Amine Desouky

(M.Sc. 1994)

To

Chemistry Department Faculty of Science Cairo University

For the Degree of Ph.D of Science (Chemistry)

Faculty of Science
Cairo University
2001

105EK

APPROVAL SHEET FOR SUBMISSION

Title of (Ph.D.) Thesis:

Effect Of Additives On Electric Properties Of ZnO-Varistors

Name of the candidate: Osama Amine Mohamed Desouky

This thesis has been approved for submission by the supervisors:

1.Prof. Dr. Afaf El-said Mahgoub

Prof. of Physical Chemistry, Department of Chemistry
Faculty of Science, Cairo University

Signature:

3.Prof. Dr. M. Monuir S. El Din

Prof. of Physics, Department of Physics Faculty of Science, Cairo University

Signature:

2.Prof. Dr. Doreya M. Ibrahim

Prof. of Ceramics, Department of Ceramics, National Research Centre Cairo

Signature:

4.Prof. Dr. Essam H. Sallam

Prof. of Ceramics, Department of Ceramics, National Research Centre Cairo

Signature:

Prof. Dr. Mohamed Helmy Elnagdi.

Chairman of Chemistry Department

Faculty of Science-Cairo University

ACKNOWLEDGEMENT

The author is deeply grateful to *Prof. Dr. Afaf El-Saeid Mahgoub*, Prof. of Physical Chemistry, Faculty of Science, Cairo University, for her supervision, active support, guidance, valuable advice and encouragement during entire course of this study.

The author wishes to express his deep gratitude to *Prof. Dr. Doreya M. Ibrahim*, Prof. of Ceramics, Department of Ceramics, National Research Centre, Cairo, for her scientific supervision, valuable advice, planning of study, fruitful discussion, valuable assistance and continuous encouragement, her help will always be remembered and not forgotten.

I would like to express my great thanks and gratitude to *Prof. Dr. Mohamed Moniur S. El-Din*, Proffesor of solid state physics department, Faculty of Science, Cairo University, for close supervision and suggesting the point of research, great cooperation, valuable guidance, critical comments and objective criticism during all stages of this work.

Thanks and gratitude also to *Prof. Dr. Essam H. Sallam*, Proffesor of Ceramics, Department of Ceramics, National Research Centre for his scientific supervision.

Thanks and gratitude also to Ass. Prof. Dr. Gamal Turky, Ass. Prof. of Microwaves Physics, Department of Physics, National Research Centre, Cairo, for his help, guidance and encouragement.

Thanks and gratitude also to Ass. Prof. Dr. Said Ward and Ass. Prof. Dr. Mohamed El-Bahy, Prof. of High Voltage, Department of Electricity, Faculty of Engineering, El-Zagazig University for his help, guidance and encouragement.

Thanks and gratitude to all the members of Department of Ceramics, National Research Centre, for the help, encouragement and facilities offered to the author through the entire course of this work.

CONTENTS

	Page
- Introduction	1
Chapter 1: Literature Review	4
- ZnO-Varistors	10
- Composition of ZnO-Varistors	15
- Electrical properties	23
- Ionic conductivity	25
- Electrical polarization	26
- Dielectric properties	29
- Dielectric constant	29
- Temperature dependence of the dielectric constant	31
- Electric properties of ZnO-varistors	32
- Atmosphere of firing	41
- Effect of calcination and initial size on the characteristics of ZnO-varistors	42
- Microstructure of ZnO-varistors	44
- Fields of application for ZnO-varistors	49
· Aim of the Work	52
Chapter II: Materials and Methods	53
2.1 Raw materials	53
2.2.1 Mix composition	53
2.3.1 Processing	54
2.4 Methods of testing	55
2.4.1 Grain size distribution	55
2.4.2 XRD analysis	56
2.4.3 Electric properties	56
2.3.4 Micro structure	59

3.1 Properties of precursors
3.1 Properties of precursors
3.1.1 Grain size distribution
3.1.2 XRD results of starting oxides
3.2.1 The XRD of fired bodies
3.2.1 The XRD of fired bodies
3.2.2 The physical properties
3.3 Results of microstructure
3.3.1 SEM of standard sample (S)
3.3.2 Microstructure of ZnO and group (I)
3.3.3 Microstructure of group (II)
3.3.4 Microstructure of group (III)
3.2.4 The electric properties
3.2.4.1 The (V-I) measurement of different groups
3.2.4.2 Frequency dependance of the dielectric constant
(ε')
3.2.4.3 Frequency dependance of AC electrical
conductivity at room temperature
3.2.4.4 The temperature dependance of the dielectric
constant (ε`)
3.2.4.5 The temperature dependance of (ρ) at constant
frequency 10kHz
Chapter V: Discussion
Chapter VI: Summary and Conclusion
Chapter VII: References
Chapter VIII: Arabic Summary
onapie. 7111. 71 doic Summary
. •

•

LIST OF FIGURES

	Energy bands in semi conductors	
1		6
2	Schematic opresentation of energy levels in excess semi conductor such as Zn _{i+x} O	1.
3	V-I static characteristics of ZnO-varistor	13
4	Schematic presentation of different mechanism of polarization	
5	Dispersion of molar polarization in a dielectric	28
6	Semi circular cole-cole plot (Blythe, 1979)	30
7	Variation of ε ` with temperature	31
8	Simple equivalent circuit representing a metal-oxide	
	varistor as a pure capacitance in parallel with a voltage dependent resistor	32
9	Shape of microstructure	46
10	Principle of connection of varistor	49
11	Silver paint on the sample	57
12	The position of varistor sample in electric circuit	57
13	Grain size distribution of ZnO used	62
14	XRD patterns of starting calcined oxides	64
15	XRD patterns of group (I)	64
16	XRD patterns of group (II)	65
17	XRD patterns of group (III)	65
18	XRD patterns of standard sample (S)	66
19	SEM of standard sample (S)	67
20	SEM of ZnO	68
21	SEM of M ₂	69
22 23	SEM of sample M ₄	69
24	SEM of sample M ₅	70
24 25	SEM of sample M ₆	71
25 26	SEM of sample Z ₃	72
20 27	SEM of sample Z ₄	73
28	SEM of sample B ₂	74
20 29	SEM of sample B ₃ SEM of sample B ₄	75 76

Figures		Page
No.		
30	(I-V) characteristics of group (I)	78
31	(I-V) characteristics of group (II)	78
32	(I-V) characteristics of group (III)	79
33	(I-V) characteristics of group (IV)	79
34	(I-V) characteristics of different samples fired at	
•	1200°C/30 min	81
35	The relation between mol% Ce ₆ O ₁₁ and BDV of	
	different samples	81
36	Dielectric constant as a function frequency at room	
	temperature of group (I)	83
37	Dielectric constant as a function frequency at room	
	temperature of group (II)	84
38	Dielectric constant as a function frequency at room	
	temperature of group (III)	84
39	AC electrical conductivity as a function frequency at	
	room temperature of group (I)	87
40	AC electrical conductivity as a function frequency at	
	room temperature of group (II)	87
41	AC electrical conductivity as a function frequency at	0.0
	room temperature of group (III)	88
42	Relation between Ce ₆ O ₁₁ mol% and AC electrical	
	conductivity of different mixes at 10kHz	88
43	Relation between dielectric constant and temperature at	
	10kHz of group (I)	90
44	Relation between dielectric constant and temperature at	0.1
	10kHz of group (II)	91
45	Polotion between disloctric constant and towns at	01
	Relation between dielectric constant and temperature at	91
46	10kHz of group (III)Relation between dielectric constant and temperature at	
40	10kHz of group (IV)	92
47	Relation between dielectric resistivity and temperature	72
77	at 10kHz of group (I)	95
48	Relation between dielectric resistivity and temperature	,,
70	at 10kHz of group (II)	95
49	Relation between dielectric resistivity and temperature	
• • • • • • • • • • • • • • • • • • • •	at 10kHz of group (III)	96
50	Relation between dielectric resistivity and temperature	
	at 10kHz of group (IV)	96

LIST OF TABLES

Table No.		Page
1	Composition of different mixes mol%	54
2	Grain size distribution of calcined ZnO powder	61
3	The water absorption of different mixes	66
4	Relation between mol% Ce ₆ O ₁₁ and break down voltage (BDV)	80

ABSTRACT

ABSTRACT

Name: Osama Amine Mohamed Desouky

Title of thesis: Effect of additives on electric properties of ZnO-varistors Degree: (Ph.D) Thesis, Faculty of Science, Cairo, University, 1999/2000

This work has been carried out to investigate the effect of additives on the electric properties of ZnO-varistors. ZnO-varistors are characterized by excellent non-linear properties in the voltage (V)-current (I) relationship, a major applications of ZnO varistors is for the protection of electric power distribution and transmission systems. The microstructure of Ce-doped ZnO ceramics, revealed the presence of a liquid phase between cerium oxide and ZnO. An interganular phase rich in cerium is made from this liquid, occurs at grain corners. The addition of 0.25 mol% of each CoO and Cr₂O₃ and/or 0.5 mol% Bi₂O₃ participated and increased the formation of this liquid phase as indicated by EDAX. Cerium was detected partly with in the ZnO grains and mainly in this intergranular phase together with ZnO alone and Cr₂O₃ and or Bi₂O₃. The liquid phase enhanced the preferential grain growth of the ZnO grains.

The study comprised the following:

- 1. Preparation of ZnO-bodies from the respective oxide.
- 2. Study of the effect of addition of cerium oxide in the range of (0.03-0.4) mol% to ZnO.
- 3. Study of the addition of Bi₂O₃, MnO₂, Al₂O₃, CoO, Cr₂O₃ to selected mix from the above, in order to improve the electrical properties of ZnO-varistors.
- 4. Determination of electrical properties.
- 5. Determination of micro-structure of some mixes.

Key words: Ceramics, electronic ceramics, semiconductors, varistors, electronic power distribution, transmission systems, non-linearity, breakdown voltage, dielectric constant, resistivity and conductivity.

Supervisors:

Prof. Dr. Mohamed Helmy Elnagdi

Chairman of Chemistry Department Faculty of Science-Cairo University