

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Cone beam computed tomographic analysis of human mandibular posterior region

Thesis submitted to Department of Endodontics, Faculty of Dentistry, Ain Shams University, in Partial Fulfillment of the Requirements of the Master's Degree in Endodontics

By Alya Mahmoud Ahmed Taha

B.D.S, Faculty of Dentistry, Ain Shams University, 2011

Faculty of Dentistry Ain Shams University

2021

Supervisors

Prof. Dr. Shehab Al-Din Muhammad Saber

Professor of Endodontics
Department of Endodontics
Faculty of Dentistry, Ain Shams University

Dr. Shaimaa Mohammed Abu El Sadat Ali

Lecturer of Oral Radiology
Department of Oral Radiology
Faculty of Dentistry, Ain Shams University

Acknowledgement

This thesis is a dream that came true with **God's** grace and the kind support of many individuals to whom I would like to extend my sincere gratitude.

All my gratitude to my professor, advisor, **Prof. Dr. Shehab Al-Din Muhammad Saber**, Professor of Endodontics,

Department of Endodontics, Faculty of Dentistry, Ain Shams

University, for his inspiring supervision, fruitful and indispensable advice, constant and valuable guidance, encouragement and for his effort in the presentation of this work.

I am greatly honored to express my deepest gratitude to **Dr.**Shaimaa Mohammed Abu El Sadat Ali, Lecturer of Oral Radiology, Department of Oral Radiology Faculty of Dentistry, Ain Shams University, for her continuous encouragement, humanity, patience, time, endless support and guidance. Her valuable experience and honorable supervision will always be remembered with a lot of gratitude.

Dedication

To

My family, whose love, encouragement, support and prayers make me able to get such success and honor. The ones who always believe in me and change my weak to strong. You are my life and reason of happiness. This work wouldn't have been achieved without your presence.

Uncle Muhammad, who have always stressed on the importance of education and supported me throughout this work. I will always appreciate what you have done for me.

Talact, life is beautiful because friends like you are there. Every single word of yours inspires me and gives me new motivation. A person like you always stands behind me in good as well as the hard times. I couldn't have asked for a better friend than you.

Morra, thank you for being my best friend and my comfort zone when things go wrong. Without your love and support, this project would not have been possible. I know it is not my first time to say this, but I can't stop thanking you for your wonderful presence and thoughtful efforts.

Dr Amír Ezzat, I wish to give you so much more than just a thank you note for your care and support you gave to me. Thanks for standing by my side even when things get hard.

Table of Contents

Subject	Page No.
List of Tables	I
List of Figures	п
Introduction	1
Review of Literature	3
Aim of this Study	21
Materials and Methods	22
Results	41
Discussion	58
Summary and Conclusion	66
References	69
Arabic Summary	

List of Tables

Table	Title	Page
1	Average measurements of buccal bone, lingual bone and root thickness at the 3mm from the apex level for each Tooth/root type categorized by sex	45
2	Average measurements of Bucco-lingual dimension, superior-inferior dimension of mandibular canal as well as buccal and lingual cortex over the mandibular canal for each tooth type categorized by sex	51
3	Proximity of root apices to mandibular canal categorized by sex	53
4	The relative mandibular canal location to each tooth/root categorized by sex	55
5	Relative horizontal location of mental foramen	56

List of Figures

Figure	Title	Page
1	CBCT machine Cranex ® SOREDEX, Finland	23
2	Exposure parameters standardized for all CBCT scans	24
3	OnDemand3D ® App (Cybermed, Seoul, Korea)	25
4	MPR 3D screen on OnDemand3D ® App	26
5	Adjusting axial plane to be passing through the cementoenamel junction	27
6	The sagittal and the coronal planes dividing the 2nd premolar and distal root of 1st molar into 2 equal halves (Axial view)	28
7	The sagittal and the coronal planes dividing the mesial and distal roots into 2 equal halves	28
8	The coronal plane dividing the 2 nd premolar into 2 halves mesio distally (Sagittal view)	28
9	The coronal plane passing through the apex and dividing the mesial root of 1 st molar into 2 equal halves (Sagittal view)	28
10	Adjustment of reference plane on the 1 st premolar	29
11	Adjustment of reference plane on the 2 nd premolar	30
12	Adjustment of reference plane on the 1^{st} and 2^{nd} molars	31
13	Measurements of the buccal and lingual bone thickness and dimension of the root at 3 mm from the apex for the 1st premolar (coronal view)	32
14	Measurements of the buccal and lingual bone	32

Figure	Title	Page
	thickness and dimension of the root at 3 mm from the apex in molars (coronal view)	
15	Measurement of superior-inferior dimension of mandibular canal in relation to the distal root of the second molar	34
16	Measurement of horizontal dimension of mandibular canal and buccal and lingual cortices adjacent to mandibular canal	35
17	Measurement of distance from tooth apex to mandibular canal	36
18	Mandibular canal location: (A) Canal located lingually, (B) Canal located buccally, (C) Canal located inferiorly	37
19	Schematic view of possible mental foramen location relative to the tooth by Chkoura, El Wady	38
20	Detection of horizontal location of mental foramen: (A) Inferior to first premolar, (B) Between first and second premolars, (C) Inferior to second premolar, (D) Between second premolar & mesial root of first molar	39
21	Buccal bone thickness at the preferred resection level (3mm from the apex)	41
22	Root thickness at the preferred resection level (3mm from the apex)	42
23	Thickness of total area that should be removed during apicectomy	43
24	Lingual bone thickness at the preferred resection level (3mm from the apex)	44
25	Buccal bone thickness over the mandibular canal	47

Figure	Title	
26	Lingual bone thickness over the mandibular canal	48
27	Bucco-lingual dimension of mandibular canal	49
28	Superior-inferior dimension of mandibular canal	50
29	Proximity of root apices to mandibular canal	52
30	Relative position of mandibular canal to tooth/root	54
31	Relative position of mandibular canal to tooth/root	54

Root canal treatment is a process performed to decayed teeth with pulpal involvement. According to the American Association of Endodontists Colleagues for Excellence 2010 Spring Newsletter, "the main aim of endodontic treatment is to create an environment in which the body can heal itself" [1]. This can be achieved by endodontic triad consisting of biomechanical preparation, microbial control and complete obturation of the canal. [2]

In situations where regular endodontic treatment or retreatment fails, an alternative approach of surgical root end resection, apical seal with retrograde filling and apical curettage should be carried out.^[3] When surgical endodontic treatment is necessary, evidence suggests microsurgical methods to produce better outcomes and achieve predictable results in the healing of endodontic lesions by using facilities, techniques, and materials that combine biological principles with clinical practice.^[4]

Before performing any endodontic surgery, it is important to identify the shape and inclination of roots, anatomical landmarks and structures adjacent to the surgical area for the planning and preparation of the osteotomy, root-end resection and root-end fill procedure.^[5]

Radiographic evaluation is one of the most effective diagnostic tools for root canal treatment, not only judging the diagnosis, but also assisting in the treatment outcome. Advanced imaging modalities as cone beam computed tomography can help the surgeon to achieve more precise measurements for the evaluation of the surgical site and giving adequate information about the anatomical landmarks at the preferred resection site (apical 3 mm). CBCT produces undistorted three dimensional images to the teeth and their surrounding structures with lower radiation dose compared to other 3D modalities as multislice CT.^[6]

Excessive removal of bone and large bony defects can occur when endodontic surgery is performed without anatomical evaluation, which can interfere with the healing process and cause postoperative discomfort. Decreasing osteotomy size will increase speed of healing as it takes an average of 6.4 months for lesions smaller than 5 mm to recover, and 11 months for lesions greater than 10 mm ^[7].

In this study, measuring buccolingual dimension of the root, buccal and lingual bone thickness at the site of root resection is imperative to help the clinician know the anatomic dimensions at the surgical site and whether a buccal or lingual approach is to be chosen.