

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

By

Mahmoud Mohammed Mahmoud Eisa Eisa

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In partial Fulfillment of the
Requirements for the Degree of
MASTER of SCIENCE
in
STRUCTURAL ENGINEERING

By

Mahmoud Mohammed Mahmoud Eisa Eisa

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In partial Fulfillment of the
Requirements for the Degree of
MASTER of SCIENCE
in
STRUCTURAL ENGINEERING

By

Mahmoud Mohammed Mahmoud Eisa Eisa

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In partial Fulfillment of the
Requirements for the Degree of
MASTER of SCIENCE
in
STRUCTURAL ENGINEERING

Under the Supervision of

Prof. Dr. Adel Y. Aki	Dr. Mostaia M. ElSaye		
Professor of Structural Analysis	Assistant Professor		
and Mechanics	Structural Engineering		
Faculty of Engineering,	Faculty of Engineering,		
Cairo University	Cairo University		

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2020

By

Mahmoud Mohammed Mahmoud Eisa Eisa

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In partial Fulfillment of the
Requirements for the Degree of
MASTER of SCIENCE
in
STRUCTURAL ENGINEERING

Approved by the
Examining Committee

Prof. Dr. Adel Y. Akl

Thesis Main Advisor

Prof. Dr. Walid A. Attia

Internal Examiner

External Examiner

Professor of Structural Analysis and Mechanics, Faculty of Engineering, Mansoura University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2020

Engineer's Name: Mahmoud Mohammed Mahmoud

Eisa Eisa

Date of Birth: 01/03/1992 **Nationality:** Egyptian

E-mail: esia.m.m@outlook.com
Cell Phone: 002- 012 849 665 04
Address: Tanta, Gharbeya, Egypt

Registration Date: 01/10/2016 **Awarding Date:** / /2020

Degree: Master of Science **Department:** Structural Engineering

Supervisors: Prof. Dr. Adel Y. Akl

Dr. Mostafa M. ElSayed

Examiners: Prof. Dr. Adel Y. Akl (Main Supervisor)

Prof. Dr. Walid A. Attia (Internal Examiner)

Prof. Dr. Nabil S. Mahmoud (External Examiner) Faculty of

Engineering, Mansoura Uni-

versity

Title of Thesis:

Evaluation of Lateral Response of Tall Building with New Proposed Outrigger Locations

Key Words:

Outrigger System; Proposed outrigger location; Seismic Fragility

Summary:

Choosing the locations of outriggers along the height of buildings is mainly based on reducing the fundamental period of it, and thus the overturning moments. In this study, an alternative procedure is proposed to allocate outriggers along the height of the building. The proposed procedure aims to reduce the difference in periods between the first two orthogonal modes of concerned structure, and thus to reduce the contribution of the twisting effect. In order to verify the accuracy of this procedure, four building heights are considered herein. These heights are numerically modeled creating almost a hundred 3D nonlinear finite-element models considering both traditional and proposed outrigger allocation techniques. First, modal properties are developed for the investigated structures to ensure the effectiveness of using the new procedure in reducing the twisting moments. Next, seven different earthquake records, with six peak ground accelerations, are applied to previously mentioned structures and expected response is evaluated. Finally, probability of different damage states is to establish using fragility curves considering both traditional and proposed procedures utilized in allocating outriggers. The results indicate that systems which use the proposed technique have stability and efficiency more than counterparts in the resistance of lateral excitation.

