

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

THE EFFECT OF NON-UNIFORMITY OF DIMENSIONS ON THE EVALUATION OF SEISMIC RESPONSE MODIFICATION FACTOR FOR REINFORCED CONCRETE FRAMES.

By

Manar Gamal Abd-El-Rahman Mahmoud

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
STRUCTURAL ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020

THE EFFECT OF NON-UNIFORMITY OF DIMENSIONS ON THE EVALUATION OF SEISMIC RESPONSE MODIFICATION FACTOR FOR REINFORCED CONCRETE FRAMES.

By **Manar Gamal Abdel-Rahman**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

STRUCTURAL ENGINEERING

Under the Supervision of

Prof. Dr. Walid A. Attia
Prof. Dr. Manar Maher Hussein

Professor of Structural Analysis and
Mechanics
Structural Engineering Department
Faculty of Engineering, Cairo University

Associate Professor of Structural Analysis and Mechanics Structural Engineering Department Faculty of Engineering, Cairo Universit

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020

THE EFFECT OF NON-UNIFORMITY OF DIMENSIONS ON THE EVALUATION OF SEISMIC RESPONSE MODIFICATION FACTOR FOR REINFORCED CONCRETE FRAMES.

By Manar Gamal Abdel-Rahman

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in STRUCTURAL ENGINEERING

Approved by the Examining Committee

Prof. Dr. Walid A. Attia, Thesis Main Advisor

Professor of Structural Analysis and Mechanics, Structural Engineering Department, Faculty of Engineering, Cairo University

Dr. Manar M. Hussein, Advisor

Professor of Reinforced concrete structures, Structural Engineering Department, Faculty of Engineering, Cairo University

Prof .Dr. Ahmed Hassan Amer, Internal Examiner

Professor of Structural Analysis and Mechanics, Structural Engineering Department, Faculty of Engineering, Cairo University

Prof .Dr. Hatem Hamdy Gheth, External Examiner

(Professor, Housing and building National Research Center)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020 Engineer's Name: Manar Gamal Abd elrahman Mahmoud

Date of Birth:2./9/1990Nationality:Egyptian

E-mail: engmanargamal5@gmail.com

Phone: 01158983186

Address:

Registration Date: 1/3/2014 **Awarding Date:**/.../.......

Degree: (Master of Science) **Department:** Structural Engineering

Supervisors:

Prof. Walid A.A

Dr. Manar M. Hussein

Examiners:

Prof. Walid A.A (Thesis main advisor) Prof. Manar M.Hussein (advisor)

Prof.(Internal examiner)
Prof.(External examiner)

(Any External Prof Dr. must write his work place)

Title of Thesis:

The effect of non-uniformity of dimension on the evaluation of seismic response factor for reinforced concrete

Key Words:

Response modification factor; pushover; parametric study; ductility factor; non-uniformity in dimension.

Summary

Base shear is measured in existing seismic design codes using the elastic force requirement divided by strength reduction factor. This element is used to take account of structures' ability to dissipate energy by inelastic deformations. This can be divided into three principal components reflecting a structural system ductility, over strength, and redundancy. Such factors depend on both structural system characteristics and ground motion. Earthquake resistant design has recently gained more popularity in Egypt. Nevertheless, there are not enough studies that explain the behavior of various structural structures used in Egypt. In this research, this study focuses on the evaluation of the response modification factor which is considered the main component of the seismic analysis. The parametric study is conducted to understand the response modification factor values of RC moment resisting frames for different number of stories, non-uniform spans and floors height and compared them to uniform bay length and floor height values and compared them with the value of ECP. RC resisting frames are selected as they are commonly used for seismic design in Egypt.

Disclaimer

Views expressed disclaimers state that the views and opinions stated on a site or platform by contributors are not the same as those of the business.

This type of disclaimer is vital if your site allows contributions from others, or provides a platform for users and guests to leave comments. It explains in legal terms that the opinion of an author you publish is not the same as that of your company or organization.

Name: Manar Gamal Abd Elrahman Date: 8/23/2020

Signature:Manar Gamal

Dedication

I dedicate my dissertation work to my family and many friends. A special feeling of gratitude to my loving parents, my husband Eng. Mahmoud Adel, Amira and Doaa Naser whose words of encouragement and push for tenacity ring in my ears. My sisters Katie, Linda and Rhonda have never left my side and are very special. I also dedicate this dissertation to my many friends and church family who have supported me throughout the process. I will always appreciate all they have done, especially Dr Manar for helping me develop my technology skills, Eng. Gamal Zahran for the many hours of proofreading. I dedicate this work and give special thanks to my best friend Eng Ahmed Ismail. My wonderful daughter Lara for being there for me throughout the entire doctorate program. Both of you have been my best cheerleaders.

Acknowledgments

I would like to express my deep and sincere gratitude to my research supervisor, ph. Dr. Walid.Atea, Ph.D., Manar Hussein, Professor and Head, Centre for Information Technology and Engineering University, all doctors, for giving me the opportunity to do research and providing invaluable guidance throughout this research. His dynamism, vision, sincerity and motivation have deeply inspired me. He has taught me the methodology to carry out the research and to present the research works as clearly as possible. It was a great privilege and honor to work and study under his guidance. I am extremely grateful for what he has offered me. I would also like to thank him for his friendship, empathy, and great sense of humor. I am extending my heartfelt thanks to his wife, family for their acceptance and patience during the discussion I had with him on research work and thesis preparation.

I am extremely grateful to my parents for their love, prayers, caring and sacrifices for educating and preparing me for my future. I am very much thankful to my husband and my daughters for their love, understanding, prayers and continuing support to complete this research work. Also I express my thanks to my sisters, brother, sister in law and brother in laws for their support and valuable prayers.

Table of Contents

DISCLAIN	MER	V
DEDICAT	TION	VI
ACKNOW	LEDGMENTS	VII
TABLE O	F CONTENTS	VIII
LIST OF T	TABLES	X
LIST OF I	FIGURES	XI
ABSTRAC	ZT	XVI
СНАРТЕ	R 1: INTRODUCTION	1
1.1.	General	1
1.2.	SCOPE OF THE RESEARCH	1
1.3.	THE THESIS ORGANIZATION	2
СНАРТЕ	R 2 : LITERATURE REVIEW	3
2.1.	Introduction	3
2.2.	REDUCTION FACTOR DEFINITION AND COMPONENTS	3
2.2.1.	Overstrength Factor (R _s)	4
2.2.2.	Ductility Reduction Factor (R _μ)	6
2.2.3.	damping factor ($R\zeta$)	12
2.3.	METHODS OF FORCE REDUCTION FACTOR EVALUATION	13
2.3.1.	Methods Based on Ductility Factor Theory	
2.3.2.	Methods Based on the Response of SDOF System	
2.3.3.	Energy Methods	
2.4.	NONLINEAR METHOD OF ANALYSIS	
2.5.	NONLINEAR STATIC PUSHOVER ANALYSIS	
2.6.	Types of Pushover Analysis	
2.6.1.	Conventional Pushover Analysis	
2.6.2.	Modal Pushover Analysis	
2.6.3. 2.7.	Adaptive Pushover Analysis OTHER NONLINEAR STATIC ANALYSIS METHODS	
2.8.	PREVIOUS STUDIES ABOUT RESPONSE MODIFICATION FACTOR	
CHAPIE	R 3: METHODOLOGY	
3.1.	BACKGROUND	
3.2.	RESPONSE MODIFICATION FACTOR	21
3.3.	PUSHOVER ANALYSIS	
3.4.	THE FAILURE CRITERIA	22
3.5.	LATERAL LOAD PATTERN	22
3.6.	PLASTIC HINGE	22
3.7.	IDEALIZATION OF PUSHOVER CURVE	23
3.8	RESPONSE MODIFICATION FACTOR CALCULATION	24

3.9.	VERIFICATION OF ANALYSIS	26
CHAPTER	4: CASE STUDY	28
4.1.	THE CASE STUDY DESCRIPTION	28
4.1.1.	General	28
4.1.2.	Groups description	
4.1.2.1.	* *	
4.1.2.2.	F	
4.1.2.3.	- · · r	
4.2.	DESIGN CODES	52
4.3.	MATERIALS	52
4.4.	MODELLING OF MATERIAL	52
4.4.1.	Concrete	52
4.4.2.	Steel	53
4.5.	Loads	54
4.5.1.	Gravity loads	
4.5.2.	Equivalent lateral load analysis	
4.6.	CROSS SECTIONS DESIGN	
CHAPTER	5: RESULTS AND DISCUSSIONS	58
5.1.	GENERAL	
5.2.	RESULTS AND DISCUSSION	58
5.2.1.	Group 1	
5.2.1.1.		
5.2.1.2.	8 1	
5.2.1.3. 5.2.1.4.	The response modification factor (R) for group1 Discussion of group 1 results	
5.2.1.4.	Group 2	
5.2.2.1.	•	
5.2.2.2.	ē .	
5.2.2.1.		
5.2.2.2.	Discussion of group 2 results	
5.2.3.	Group 3	
5.2.3.1.	Plastic hinge formation for group 3	
5.2.3.2.	Pushover curves for group 3 The response modification factor (R) for group 3	
5.2.3.3. 5.2.3.4.	Discussion of group 3 results	
5.3.	EFFECT OF CHANGING SPAN LENGTH	
5.3.1.	Effect of changing span length of 4 stories	
5.3.2.	Effect of changing span length of 6 stories	
5.3.3.	Effect of changing span length of 8 stories	
5.3.4.		
	Effect of changing span length of 10 stories	
5.4.	EFFECT OF CHANGING FLOOR HEIGHT	
5.4.1.	Effect of changing floor height of 4 stories	
5.4.2.	Effect of changing floor height of 6 stories	
5.4.3.	Effect of changing floor height of 8 stories	
5.4.4.	Effect of changing floor length of 10 stories	
5.5.	SUMMARY OF ALL GROUPS	101
CHAPTER	6: CONCLUSIONS AND RECOMMENDATIONS	102
6.1.	Summary	102

6.2.	Conclusions	102		
6.3.	FUTURE WORK AND RECOMMENDATIONS	103		
REFERENCES104				
APPENDIX (A): GEOMETRY, CONCRETE DIMENSIONS, AND RFT OF				
THE ST	UDIED FRAMES	107		

List of Tables

Table 2.1: constants values in Equation	7
Table 2.2: constants values in equations 2.23&2.24	10
Table 2.3: Values of p based on the percentage of damper equipped in the bay	19
Table 3.1: Reinforcement of beams and columns in this study (Amira etal.2016).	27
Table 3.2: The comparison between the result of present study and Amira el Yam	nani
study	27
Table 5.1: R values for 3 bays frames for group1 (the fundamental period is	
calculated utilizing sap2000)	64
Table 5.2: R values for 3 bays frames for group 2 (the fundamental period is	
calculated utilizing sap2000)	78
Table 5.3: R values for 3 bays frames for group 3 (the fundamental period is	
calculated utilizing sap2000)	94