

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

Evaluation of brain iron content in Egyptian Patients with Sickle cell disease and its impact on Neurocognitive functions

A Thesis

Submitted For partial fulfillment of Master degree in pediatrics

By

Hanaa Midhat Abdel Gader Hussein

M.B.B.Ch., Faculty of Medicine Misr University for Science and Technology

Supervised by **Prof. Mohsen Saleh Elalfy**

Professor of Pediatrics Faculty of Medicine - Ain Shams University

Assist. Prof. Fatma Soliman Elsayed Ebeid

Assistant Professor of Pediatrics Faculty of Medicine - Ain Shams University

Prof. Ahmed Sameer Ibrahim

Professor of Radiology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2019

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Mohsen Saleh Elalfy,** Professor of Pediatrics, Faculty of Medicine - Ain Shams University, for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to Assist. Prof. Fatma Soliman Elsayed Ebeid, Assistant Professor of Pediatrics, Faculty of Medicine - Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Prof.** Ahmed Sameer Ibrahim Professor of Radiology, Faculty of Medicine-Ain Shams University, for his great help and guidance.

Hanaa Midhat Abdel Gader Hussein

Evaluation of brain iron content in Egyptian Patients with Sickle cell disease and its impact on Neurocognitive functions

Mohsen Saleh Elalfy¹, Fatma Soliman Elsayed Ebeid¹, Mohammed Ahmed Samir Ibrahim², Hanaa Midhat Abdel Gader Hussein¹

Pediatric Department, ²Radiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt

ABSTRACT

Background: Sickle cell disease (SCD) is considered the most prevalent monogenic diseases worldwide. Iron overload is one of its major complications especially those who required frequent transfusion. MRI is a reliable and non-invasive method for quantifying iron concentration in many organs as the liver and heart. Children with SCD are at a high risk for neurocognitive impairment; they often scored lower on general IQ measures than healthy children which may be due to iron overload in brain tissue.

Primary objective: To assessed brain iron content (using R2* values) in the caudate and thalamic regions through quantitative brain MRI study in SCD patients in comparison to age and sex-matched healthy controls. **Secondary objective:** To evaluate the impact of brain iron content on neurocognitive functions assessed by neurocognitive examinations.

Methods: 32 children and young adults (19 males, 13 females) with SCD and 11 control persons (5 males, 6 females) were recruited. Brain MRI study using multi-echo fast gradient echo sequence was performed for only 15 SCD patients and 11 controls. Brain R2* values of both caudate and thalamic regions (right and left sides) were calculated. All SCD patients were examined for the neurocognitive functions; Wechsler IV Intelligence Scale (verbal, perceptual, memory, processing and total IQ) and Benton Visual Retention Test.

Results: No statistically significant differences were found between SCD and control group in all regions of interests in brain MRI. No statistically significant differences were found between the two subgroups (p>0.05) in right thalamus, left and right caudate regions. 62.5% SCD patients had anxiety; 4.2%, 8.3% and 50% had severe, moderate and mild anxiety respectively.

Conclusion: Although children and young adults with SCD had high prevalence of neurocognitive dysfunction, this could not be explained by brain iron overload alone which might be slowly accumulating iron.

Keywords: Brain iron overload, Sickle cell disease, T2* values.

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	iv
Introduction	1
Aim of the Work	4
Review of Literature	
Sickle Cell Disease	5
Neurocognitive Deficits in Children with Sickle O	
Patients and Methods	
Results	44
Illustrative Case	61
Discussion	64
Limitation of the Study	71
Conclusion	
Recommendations	73
Summary	74
References	
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Clinical characteristicsamong the SCD patients	
Table (2):	Treatment modalities among the students	
Table (3):	Disease related complications am studied SCD patients	•
Table (4):	Laboratory data among the stude patients	
Table (5):	Laboratory data among the stude patients	
Table (6):	Wechsler IV Intelligence Scale an studied SCD patients	•
Table (7):	Wechsler IV Intelligence Scale an studied SCD patients	_
Table (8):	Comparison between SCD patie controls as regards age and sex	
Table (9):	Comparison between the SCD paticontrol as regards MRI in difference areas	nt brain
Table (10):	Correlations between different bra and age and clinical data among s disease cases	ickle cell
Table (11):	Correlations between different bra treatment modalities among sickle ce cases	ll disease

List of Cables (Cont...)

Table No.	Title	Page No.
Table (12):	Correlations between different brain and laboratory investigation among sickly disease cases	le cell
Table (13):	Correlations between different brain area neurocognitive function among sickle disease cases	cell
Table (14):	Correlation coefficients between R2* value different regions of brain with patients' radiological parameters	other

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Normal RBCs and abnormal sickly blood cells	
Figure (2):	Molecular pathophysiology of sick disease	le cell
Figure (3):	Percentage of SCD patients with ferritin more than 2500ng/ml	serum
Figure (4):	Depression category among the s SCD patients	studied
Figure (5):	Correlations between left caudate R age among sickle cell disease cases	2* and
Figure (6):	Correlation between right thalamu and transfusion index among SCD p	
Figure (7):	Correlation between left caudate I HbS%	$ m R2^*$ an
Figure (8):	Correlation between left caudate R: HbA%	2* and
Figure (9):	Correlation between left caudate R difference of correct	2^* and
Figure (10):	Multi-echo fast gradient echo brain M	
Figure (11):	Data analysis using Microsoft Spread Sheet V 2.01: the signal in (TE) is plotted against multiple TE v	Excel tensity

List of Abbreviations

Abb.	Full term
ACS	. Acute chest syndrome
ALT	. Alanine amino trasnferese
AST	. Aspartate amino transferese
BBB	. Blood brain barrier
BCECs	. Brain capillary endothelial cells
BPRS	. Brief Psychiatric Rating Scale
CBC	. Complete blood count
CNS	. Central nervous system
CSSCD	. Cooperative Study of Sickle Cell Disease
CVAs	. Cerebrovascular accidents
DFO	. Deferoxamine
DFP	. Deferiprone
DFX	. Deferasirox
DNA	. Deoxyribonucleic acid
GI	. Gastrointestinal
GSH	. Glutathione
Hb	. Hemoglobin
HbA	. Hemoglobin A
HbA2	. Hemoglobin A2
HbF	. Hemoglobin F
HbS	. Hemoglobin S
HCV	. Hepatitis C virus
HPLC	. High-Performance Liquid Chromatography
IQ	. Intelligence Quotient
Kg	. Kilogram
LDH	. Lactate dehaydrogenese
LIC	. Liver Iron Concentration

List of Abbreviations (Cont...)

Abb.	Full term
MRA	. Magnetic resonance angiogram
MRI	. Magnetic Resonant Imaging
MTD	. Maximum tolerated dose
NADPH	. Nicotinamide adenine dinucleotide phosphate
NTBI	. Non transferrin bound iron
RBCs	. Red Blood Cells
ROC	. Receiver Operating Characteristic
ROI	. Region of Interest
ROS	. Reactive oxygen species
SCA	. Sickle cell anemia
SCD	. Sickle cell disease
SCI	. Silent cerebral infarction
SDS	. Standard deviation score
SWI	. Weighted Images Sequence
TF	. Transferrin
TfR1	. Transferrin receptors
TIQ	. Total Intelligence Quotient
TLC	. Total Leucocytic Count
UT	. Under threshold (UT)
VOC's	. Vaso-occlusive crises
WAIS-IV	. Wechsler Adult Intelligence Scale-Fourth
	Edition
WBC	. White blood cell
α	. Alpha
β	. Beta
γ	. Gamma