

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

A NEW STRATEGY TO SOLVE THE INTERMITTENCY PROBLEM IN RENEWABLE ENERGY SYSTEMS USING A HYBRID ENERGY STORAGE SYSTEM

By

Eng. Walid Mohamed Mohamed Kamel

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE In Electrical Power and Machines Engineering

A NEW STRATEGY TO SOLVE THE INTERMITTENCY PROBLEM IN RENEWABLE ENERGY SYSTEMS USING A HYBRID ENERGY STORAGE SYSTEM

By Eng. Walid Mohamed Mohamed Kamel

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE In Electrical Power and Machines Engineering

Under the Supervision of

Prof. Hosam Kamal Youssef

Dr. Tarek Abdelbadea Boghdady

Professor of Electrical Power Engineering Electrical Power Engineering Department Faculty of Engineering, Cairo University Assistant Professor Electrical Power Engineering Department Faculty of Engineering, Cairo University

A NEW STRATEGY TO SOLVE THE INTERMITTENCY PROBLEM IN RENEWABLE ENERGY SYSTEMS USING A HYBRID ENERGY STORAGE SYSTEM

By **Eng. Walid Mohamed Mohamed Kamel**

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE In Electrical Power and Machines Engineering

Approved by the Examining Committee		
Prof. Dr. Hosam Kamal Youssef	Thesis Main Advisor	
Prof. Dr. Hassen Taher Dorrah	Internal Examiner	
Prof. Dr. Said Abd El Monem Wahsh Electronics Research Institute (ERI)	External Examiner	

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021 **Engineer's Name: Walid Mohamed Mohamed Kamel**

Date of Birth: 6/3/1989 Nationality: Egyptian

E-mail: Eng.walidkamel@yahoo.com

Phone: 01009189960

Address: El-Mokattam, Cairo, Egypt

Registration Date: 1/10/2016 Awarding Date: //2021

Degree: Master of Science

Department: Electrical Power and Machines Engineering.

Supervisors:

Prof. Dr. Hosam Kamal Youssef Dr. Tarek Abdelbadea Boghdady

Examiners:

Prof. Dr. Hosam Kamal yousefThesis Main AdvisorProf. Dr. Hassen Taher DorrahInternal ExaminerProf. Dr. Said Abd El Monem WahshExternal Examiner

(Electronics Research Institute).

Title of Thesis:

" A NEW STRATEGY TO SOLVE THE INTERMITTENCY PROBLEM IN RENEWABLE ENERGY SYSTEMS USING A HYBRID ENERGY STORAGE SYSTEM"

Key Words:

Battery; EDLC; Hybrid energy storage; Renewable; Supercapasitor; Wind energy.

Summary:

Renewable energy receives greater attention as a sustainable alternative to more traditional energy sources. They are environmentally friendly energy sources as solar energy and wind energy; however, there are still some severe concerns about several sources of renewable energy and their implementation as capital costs and their intermittent power production called the "intermittency problem" due to depending on the weather.

The main objectives of this thesis are to study, model, and simulate the performance of the hybrid energy storage system. This represents one of the most promising storage techniques connected with renewable energy sources to reduce the intermittency and variability of renewable energy sources and satisfying the load demand.

DISCLAIMER

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Walid Mohamed Mohamed Kamel

Date: / /2021 (It's the date that you handover the thesis)

Signature:

Acknowledgments

Thanks ALLAH for giving me the ability to learn, understand, and work.

Thanks ALLAH; you are the unique donor for all achievements especially this work.

I would like to express my deep appreciation to my supervisor, **Prof. Dr. Hosam Kamal Youssef**, for his encouragement, helpful advice and the time he offered me during research period.

I would like to express my sincere thanks and heartiest gratitude to **Dr. Tarek Abdelbadea Boghdady** for his great guidance and encouragement during all stages of this research.

I am so thankful to my parents, for their support and encouragement through my whole life.

Table of Contents

Acknowledgmentsi
Table of Contentsii
List of Tablesv
List of Figuresvi
List of Abbreviationsviii
List of Symbolsx
Abstractxi
Chapter 1 Introduction
1.1 Overview
1.2 Thesis Objectives
1.3 Thesis Outline
Chapter 2 Survey on Energy Storage Devices And Wind Energy 3
2.1 Battery Storage System
2.1.1 Lead-acid Battery
2.1.2 Nickel-cadmium Battery
2.1.3 Sodium-sulfur Battery
2.1.4 Vanadium redox Battery
2.2 Electrochemical Double Layer Capacitors
2.2.1 Electrochemical Double Layer Capacitor and its concept 5
2.2.2 Construction of Electrochemical Double Layer Capacitor 6
2.2.3 Modeling of Electrochemical Double Layer Capacitor
2.3 Hybrid Energy Storage System (HESS)
2.4 Energy Storage Devices for Renewable Energy Applications
2.5 Summary of the chapter
Chapter 3 Modeling of Wind Turbine based Permanent Magnet Synchronous Generator
3.1 Worldwide Wind Energy Capacity
3.1.1 The Total Electricity Generation from all Renewable Sources
3.1.2 Top Countries in using Renewable Energy
3.2 Renewable Energy Capacity in Egypt
3.2.1 Wind Energy Capacity in Egypt

3.3 Oscillations of Wind Power	16
3.3.1 Wind Farms Oscillatory Modes	16
3.3.1.1 Oscillation of Wind Farm against Power System	16
3.3.1.2 WT Inner Oscillations	17
3.3.2 Damping Control for Wind Turbine Inner Oscillations	18
3.3.2.1 Mechanical Control System	18
3.3.2.2 Converter Control System	18
3.4 The Wind Turbine Permanent Magnet Synchronous Generator	
3.4.1 Overview	19
3.4.2 Operating principle WTPMSG	20
3.5 WTPMSG Modeling	21
3.6 WTPMSG with Variable Wind Speed	23
3.7 Summary of the Chapter	25
Chapter 4 Computational Simulation and Optimization of a Stand-Alone System with Energy Storage System Using HOMER Pro Software	
4.1 HOMER Pro Software	26
4.2 Cost Optimization Methodology	27
4.3 Design of Stand Alone System Structure with Energy Storage	27
4.3.1 Parameters of Components and Units of System	28
4.3.2 Area of Study and Its Resources	29
4.3.3 Load Profile of Study Area	30
4.4 HOMER Simulation Results	30
4.5. HESS for the Proposed System	33
4.6. Summary of the Chapter	34
Chapter 5 Integration of Stand Alone Wind System with Hybrid I Storage	
5.1 Hybrid energy storage capacity	36
5.2 SAWS-HES Conditioning Circuits	36
5.2.1 The Rectifier Connected To the WTPMSG	36
5.2.2 The DC Buck Converter.	38
5.2.3. The Inverter for AC Load.	39
5.3. The System Components Integration	40
5.4. Operational Strategy of SAWS-HES	42
5.5. The SAWS-HES Simulation Results	
5.5.1 The SAWS-HES Simulation without any Energy Storage Device	45
5.5.2 The SAWS-HES Simulation with BSS Only	
5.5.3 The SAWS-HES Simulation with BSS and EDLC	49

5.5.4 The SAWS-HES Simulation with EDLC Only	52
5.6 Summary of the Chapter	54
Chapter 6 Conclusions and Future Work	55
6.1 Conclusions	55
6.2 FutureWork	57
References	58

List of Tables

Table 3.1 Installed wind power capacity by Regional area	12
Table 3.2 Annual generation from wind and all renewable sources	13
Table 3.3 Top countries in using renewable energy installation in 2018	14
Table 3.4 Total installed capacity in Egypt 2017/2018	14
Table 3.5 Total produced energy in Egypt 2017/2018	15
Table 3.6 Data of Wind farms in Egypt	15
Table 3.7 Two mass drive train parameters	21
Table 3.8 PMSG ratings and parameters	22
Table 4.1 Design parameters of components and units of system	28

List of Figures

Figure 2.1: EDLC charge storage mechanism	5
Figure 2.2: EDLC structure.	6
Figure 2.3: The classical equivalent circuit of an EDLC	8
Figure 2.4: Basic structure of HESS	9
Figure 2.5: Ragone plot of energy storage devices:	9
Figure 2.6: Schematic diagram of standalone renewable energy system v HESS	
Figure 3.1: Main W.T technologies. (a) SCIG-FSWT, (b) DFIG-VSWT(c) F Rate Converter induction generator—VSWT, and (d) Direct drive synchronogenerator—VSWT	ous
Figure 3.2: Damping control for WT inner oscillations	. 18
Figure 3.3: The schematic diagram of WTPMSG	. 19
Figure 3. 4: The WTPMSG schematic diagram by Matlab/Simulink	. 22
Figure 3.5: Wind speed variation at time 30 to 70 s.	. 23
Figure 3.6: The WTPMSG output power variation with wind speed variation	ւ 24
Figure 3.7: RMS voltage value	. 24
Figure 3.8: Torques and rotor speed	. 25
Figure 4.1: HOMER pro components types	. 26
Figure 4.2: The proposed system structure with BSS	. 27
Figure 4.3: The proposed system structure with EDLC	. 28
Figure 4.4: The selected study area location in Al-Kosair, Red sea governora Egypt	
Figure 4.5: Monthly average wind speed data	. 29
Figure 4.6: The virtual load variation over the full year period	. 30
Figure 4.7: Optimization results for WT with BSS	. 31
Figure 4.8: Optimization results for WT with EDLC	. 31
Figure 4.9: The monthly power production of the WT system	. 31
Figure 4.10: The output power of the WT over a full year period	. 32
Figure 4.11: (a) SoC of BSS and (b) BSS power over the full year	. 32
Figure 4.12:(a) SoC of EDLC system and (b)EDLC power over the full year	33
Figure 5.1: The schematic diagram of SAWS-HES	. 35
Figure 5.2: The schematic of the AC/DC rectifier after WTPMSG	. 37

Figure 5.3: The rectifier output DC voltage with time	. 37
Figure 5.4: The schematic of the DC/DC buck converter	. 38
Figure 5.5: The DC/DC buck converter DC voltage with time	. 39
Figure 5.6: The DC/AC inverter schematic	. 40
Figure 5.7: The SAWS-HES model simulation	. 41
Figure 5.8: Scenario (a): $P_R = P_L$. 42
Figure 5.9: Scenario (b): $P_R > P_L$. 42
Figure 5.10: Scenario (c): $P_R < P_L$. 43
Figure 511: Scenario (d): P_R drops to zero, so the HESS only supply load $P_{HESS} = P_L$	
Figure 5.12: Scenario (e): $P_R = P_L _{\rm imp}$, and the HESS is about to be empty .	. 43
Figure 5.13: Scenario (b): $P_R > P_L$ and HESS SoC=100	. 44
Figure 5.14: The end load power demand	. 45
Figure 5.15: The DC bus voltage	. 46
Figure 5.16: the system output power	. 46
Figure 5.17: The end load power demand.	. 47
Figure 5.18: Battery current ,voltage and SOC versus time.	. 48
Figure 5.19: The DC bus voltage	. 49
Figure 4.20: The end load power demand	. 50
Figure 5.21: Battery SOC ,current and voltage versus time	. 50
Figure 5.22:EDLC current ,voltage and SOC versus time.	. 51
Figure 5.23: The DC bus voltage.	. 52
Figure 5.24: The end load power demand	. 53
Figure 5.25:EDLC current ,voltage and SOC versus time	. 53
Figure 5.26: The DC bus voltage	. 54