

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

كليـــة العلـــوم قسم الكيمياء

Zwitterionic Gemini Surfactants and Their Applications in Petroleum Field

A Thesis submitted by

Ahmed Hamed Ahmed Abd Elrahman Elged

(B.Sc. chemistry) 2005 (M. Sc. chemistry) 2015

For the requirement of Ph.D.Degree of Science in Chemistry

Prof. Dr. EL Sayed Ahmed Soliman

Prof. Dr. of Organic chemistry, Faculty of Science, Ain- shams University

Prof. Dr. Mohammed Mahmoud ElSukkary

Prof. Dr. of applied Chemistry, Egyptian Petroleum Research Institute

Prof. Dr. Ismail Adb Elrahman Aiad

Prof. Dr. of organic Chemistry, Egyptian Petroleum Research Institute

Prof. Ass. Samy Mohammed Ahmed Shaban

Prof. Ass. of organic Chemistry, Egyptian petroleum research institute

To

Department of Chemistry

Faculty of Science, Ain- shams University

(2021)

كليـــة العلــوم قسم الكيمياء

Zwitterionic Gemini Surfactants and Their Applications in Petroleum Field

By Ahmed Hamed Ahmed Abd Elrahman Elged

Thesis Advisors Approved

Prof. Dr. EL Sayed Ahmed Soliman

Prof. Dr. of Organic chemistry,
Faculty of Science, Ain- shams University

Prof. Dr. Mohammed Mahmoud ElSukkary

Prof. Dr. of applied Chemistry, Egyptian Petroleum Research Institute

Prof. Dr. Ismail Adb Elrahman Aiad

Prof. Dr. of organic Chemistry, Egyptian Petroleum Research Institute

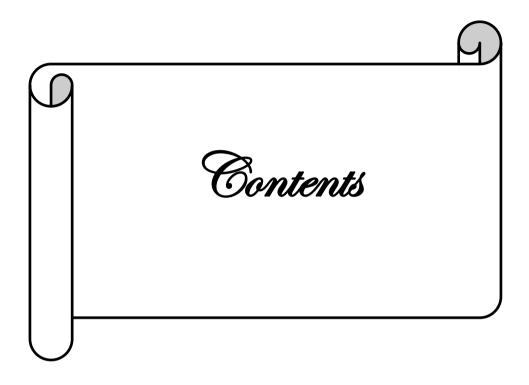
Prof. Ass. Samy Mohammed Ahmed Shaban

Prof. Ass. of organic Chemistry, Egyptian petroleum research institute

Head of Chemistry Department

Prof.Dr.Ayman Ayoub Abdel-Shafi

ACKNOWLEDGMENT

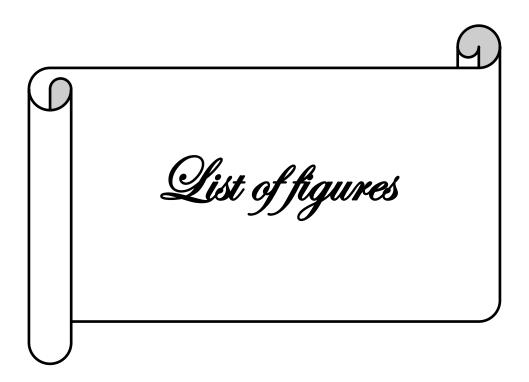

First and last thanks to Allah who give me the power to go forward in a way illuminated with his merciful guidance.

Words are not enough to describe my deep thanks to

I wish to express my deep thanks, ultimate appreciation and respect to

- **Prof.Dr. EL Sayed Ahmed Soliman,** Professor of organic chemistry, Faculty of Science, Ain Shams University, for Continuous encouragement, valuable advices, continuous valuable helps and valuable criticism during the course of this work.
- **Prof. Dr. Mohammed Mahmoud Elsukkary,** Professor of Organic Chemistry, Petrochemicals Department, Egyptian Petroleum Research Institute (EPRI), not only for suggesting the subject investigated but also for Continuous encouragement, valuable advices, continuous valuable helps and valuable criticism during the course of this work.
- **Prof. Dr. Ismail Aiad,** Professor of Organic Chemistry, Petrochemicals Department, Egyptian Petroleum Research Institute (EPRI), not only for suggesting the subject investigated, valuable advices, kind guidance, but also for her continuous advice and valuable criticism during all phases of this work.
- **Dr. Samy Mohamed shaban,** assistant. Professor of Organic Chemistry, Petrochemicals Department, Egyptian Petroleum Research Institute (EPRI), not only for suggesting the subject investigated but also for Continuous encouragement, valuable advices, continuous valuable helps and valuable criticism during the course of this work.

Last but not least, thanks for all members of petrochemical Department of Egyptian Petroleum Research Institute who helped me to make this work also especially my father, mother, sisters and my wife.


List of Content

acknowledgment	l
list of content	II
list of fig	VII
list of tables	XIV
abbreviations	XVII
aim of the work	XX
abstract	XXIII
1. INTRODUCTION	1
1.1. Introduction to surfactant	1
1.2. Classification of surfactant:	2
1.2.1.Cationic Surfactants:	3
1.2.2. Anionic surfactants:	7
1.2.2.1. Carboxylates	8
1.2.2.2 Sulfates	10
1.2.2.3 Phosphates:	15
1.2.3. Nonionic surfactants	16
1.2.4. Amphoteric (Zwitterionic) surfactants	19
1.2.5 Gemini surfactant	20
1.3. Applications of surfactants:	22
1.3.1. Surfactant as a corrosion inhibitors	23
1.3.1.1 corrosion	23
1.3.1.2 Forms of corrosion	26
1.3.1.3 . Chemistry of corrosion	26
1.3.1.4 Corrosion Types Based on Mechanism	27
1.3.1.5. Corrosion Prevention Methods (Corrosion protection):	30
1.3.5.1.1. Corrosion inhibitors	31
REVIEW	36
2. MATERIALS AND EXPERIMENTAL TECHNIQUES	54
2.1. materials	54
2.2. Synthesis of gemini zwitterionic surfactants:	55
	55

2.2.2. Quaternization of prepared Schiff bases	
2.2.3. Reaction with phosphoric acid (esterification process):	56
2.2.4 neutralization step.	56
2.2.5. Preparation of silver nanoparticles (AgNPs):	58
2.3. structural confirmation of prepared gemini zwitterionic surfactant	58
2.4. Measurements:	60
2.4.1. Surface tension measurements (y	60
2.4.2 Determination of surface parameters of prepared	
compounds	61
2.4.3. Determination thermodynamic parameter of micellization	
and adsorption	63
2.4.4. Corrosion measurements:	64
2.4.1.1. Weight loss method	65
2.4.4.2. Potentiodynamic polarization method:	66
2.4.4.3. Electrochemical Impedance Spectroscopy (EIS):	69
2.4.5. Determination of catalytic activity of prepared silver nano	69
particles	69
2.4.6. Determination of antimicrobial activity of prepared	71
compounds:	,,
2.4.7. Determination of Biocidal Activity of Prepared Compounds	73
Aginst Sulphate Reducing Pacteria (SRB):	
3. RESULTS AND DISCUSSION	75
3.1. Synthesis of Gemini zwitterionic surfactants:	76
3.2. Structure Confirmation of the Synthesized Gemini zwitterionic Surfactants	79
3.2.1. Fourier Transfer Infrared Spectroscopy (FTIR)	79
3.2.2. ¹ H-NMR Spectra:	84
3.2.3. Spectrophotometer	88
3.3. Synthesis of Silver Nanoparticles	88
3.3.1. The Mechanism of the Silver Nanoparticles Formation:	90
3.3.2. Confirmation of Silver Nanoparticle Formation:	91

3.3.2.1. Transmission Electron Microscope (TEM) and Selected Area Electron Diffraction (SAED):	
3.3.2.2 UV- Vis Spectroscopy	97
3.3.2.3 Dynamic Light Scattering (DLS):	100
3.3.2.4. Energy Dispersive X-ray (EDX) EDX	105
3.4. Surface Activities of Prepared Zwitterionic Gemini Surfactants:	107
3.4.1. Critical Micelle Concentration of Prepared Cationic Surfactants (CMC):	114
3.4.2. Maximum Surface Excess (Gmax):	117
3.4.3. Minimum Surface Area (Amin):	118
3.4.4. Efficiency (PC20):	120
3.4.5. Effectiveness (π _{CMC}):	120
3.5. Thermodynamic Parameters of Micellization and Adsorption of Prepared Cationic Surfactants.	122
3.6. Studing the Corrosion Inhibition of C-Steel in1M Hydrochloric acid by New zwitterionic gemini Surfactants	126
3.6.1. Evaluation of the Synthesized Inhibitors Gravimetricaly:	127
3.6.1.1. Effect of Inhibitor Concentrations	127
3.6.1.2 Effect of Temperature	128
3.6.1.3. Effect of Hydrophobic Chain Length:	130
3.6.1.4. Effect of Hydrophilic group (head group):	130
3.6.2 Potentiodynamic Evaluation of the Synthesized Inhibitors:	139
3.6.3. Electrochemical Impedance Spectroscopy (EIS):	146
3.7. Activation Thermodynamic Parameters of corrosion process in 1.0 M HCl	155
3.8. Adsorption Isotherm	165
3.9 Atomic Force Microscopy (AFM)	173
3.10 XPS	175

3.11 Catalytic activity	
3.12. Evaluation of the synthesized surfactants as antibacterial and antifungal	194
3.13. Evaluation of the synthesized surfactants as antibacterial against SRB	
Summary and Conclusions	201
References	212
الملخص العربي	

List of figures

no.	fig name	page
1.1	Schematic structure of a surfactant	2
1.2	Surfactants classification according to the composition of their head.	3
1.3	Corrosion Types Based on Mechanism	27
2.1	The Tensiometer-K6 processor.	61
2.2	Standard electrochemical cell	68
2.3	the working electrode	68
3.1	IR of 8-ester po4	80
3.2	IR of 8-po-8	80
3.3	IR of 12-ester po4	81
3.4	IR of 12-po-12	81
3.5	IR of16-ester po4	82
3.6	IR of 16-po-16	82
3.7	1HNMR of 8-po-8	85
3.8	1HNMR of 12-po-12	86
3.9	1HNMR of 16-po-16	87
3.10.	nano silver materials	89
3.11	TEM IMAGES FOR 8-PO-8	93
3.12	TEM IMAGES FOR 12-PO-12	94
3.13	TEM IMAGES FOR 16-PO-16	95
3.14	selected area electron diffraction pattern of AgNPS capped 8-po-8 surfactant).	96
3.15	selected area electron diffraction pattern of AgNPS capped 12-po-12 surfactant).	96
3.16	selected area electron diffraction pattern of AgNPS capped 16-po-16 surfactant).	97

3.17	UV of silver nano capped surfactant	99
3.18	size distribution of 8-po-8	104
3.19	size distribution of 12-po-12	104
3.20.	size distribution of 16-po-16	105
3.21	EDX silver nanoparticles capped by prepared surfactants 8-po-8	106
3.22	EDX silver nanoparticles capped by prepared surfactants 12-po-12	106
3.23	EDX silver nanoparticles capped by prepared surfactants 16-po-16	107
3.24	Variation of surface tension against Log concentration of 8-po-8 at different temperatures.	109
3.25	Variation of surface tension against Log concentration of 12-po-12 at different temperatures.	110
3.26	Variation of surface tension against Log concentration of 16-po-16 at different temperatures.	111
3.27	28Variation of surface tension against Log concentration of 8-po-8 & 12-po-12 and 16-po-16 at 20°C	112
3.28	28Variation of surface tension against Log concentration of 8-po-8 & 12-po-12 and 16-po-16 at 40°C	113

3.29	28Variation of surface tension against Log concentration of 8-po-8 & 12-po-12 and 16-po-16 at60°C	114
3.29a	effect of temp on CMC	116
3.29b	effect of chain lengthon CMC	117
3.30.	activity and corrosion rate against log concentration of 8-po-8, 12-po-12 and 16-po-16 at 25°C	137
3.31	activity and corrosion rate against log concentration of 8-po-8, 12-po-12 and 16-po-16 at 40°C	137
3.32	activity and corrosion rate against log concentration of 8-po-8, 12-po-12 and 16-po-16 at 55°C	138
3.33	activity and corrosion rate against log concentration of 8-po-8, 12-po-12 and 16-po-16 at 70 °C	138
3.34	Potentiodynamic polarization curves for the carbon steel in 1.0 M HCl in the absence and presence of different concentrations of 8-po-8 at scanning rate 2 mV s ⁻¹	143
3.35	Potentiodynamic polarization curves for the carbon steel in 1.0 M HCl in the absence and presence of different concentrations of 12-po-12 at scanning rate 2 mV s ⁻¹	144
3.36	Potentiodynamic polarization curves for the carbon steel in 1.0 M HCl in the absence and presence of different concentrations of 8-po-8 at scanning rate 2 mV s ⁻¹	145