

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

Effect of Er,Cr:YSGG laser debonding & two surface treatments on color & translucency of Lithium Disilicate restorations

A thesis submitted for the partial fulfillment of the Masters Degree of science requirement in Fixed Prosthodontics, Faculty of Dentistry, Ain Shams University

By

Yasmin Samy Hassan

B.D.S Faculty of Dentistry, Ain Shams University (2011)

Faculty of Dentistry
Ain Shams University
2020

Supervisors

Dr. Tarek Salah Morsy

Professor & Head of Fixed Prosthodontics Department Faculty of Dentistry, Ain Shams University

Dr. Fatma Adel

Lecturer of Fixed Prosthodontics

Faculty of Dentistry, Ain Shams University

Faculty of Dentistry

Ain Shams University

2020

Acknowledgments

First, thanks to **Allah**, to whom I relate any success.

I am highly thankful to **Dr. Tarek Salah,** Professor of Fixed Prosthodontics, Faculty of Dentistry, Ain Shams University & Head of fixed prosthodontics department, for his immense knowledge, continuous motivation, and kind support. Without his help, this work would never have been possible.

I express my thanks to **Dr. Fatma Adel,** Lecturer of Fixed Prosthodontics, Faculty of Dentistry, Ain Shams University, for the efforts and time he has devoted to accomplish this work.

I also have to thank **Dr. Khaled Kera,** Faculty of Dentistry, Ain Shams University, for his great effort with me in my statistical work.

Finally, I am highly grateful to all staff members at Fixed Prosthodontics Department at Faculty of Dentistry, Ain Shams University, for their great support for me to finish my Master's Degree at the department.

I must express my very profound gratitude to my family for their support and continuous encouragement.

Abstract

Debonding of lithium disilicate restorations represent challenges. To overcome these difficulties, the use of lasers was recently introduced as a more comfortable and more conservative restoration removal technique.

This study evaluated the effect of Er;Cr;YSGG laser debonding & two different surface treatments on color stability & translucency of lithium disilicate restorations

28 ceramic E.max CAD samples were prepared, samples were divided into 2 groups according to thickness whether 0.5 mm or 1mm (each group =14 samples). Each group divided into 2 subgroups according to different surface treatments, whether hydrofluoric acid (n=7) or laser surface modification (n=7). 28 freshly extracted, non-carious bovine permanent incisors were prepared to receive lithium disilicate discs, after bonding of samples to the prepared teeth they were subjected to laser irradiation using specific wavelength Er;Cr:YSGG (2780 nm), debonding time was calculated for each sample. 2 different surface treatments were applied to the samples (acid etching & laser etching) color & translucency was measured before & after debonding & surface treatments. Surface of the samples was analyzed by SEM to evaluate the difference between before & after debonding & surface treatments.

Color measurements for all specimens were performed with CIELab color system using a clinical spectrophotometer. To analyze the effects of surface treatment procedures, color difference was calculated before and after surface treatments on the gray background with the following equation.

Contents

Subject	Page No.
List of Tables	i
List of Figures	iii
Introduction	1
Review of Literature	3
Statement of problem	32
Aim of the Study	33
Materials and Methods	34
Results	71
Discussion	93
Summary	104
Conclusion	107
Clinical Significance	108
References	109
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Materials used:	34
Table (2)	Chemical composition of IPS E.max Standard composition (in % by weight):	
Table (3):	Mechanical properties of IPS E.max Blocks:	
Table (4):	Composition of RelyX TM Veneer:	36
Table (5):	Composition of relyX ultimate:	37
Table (6):	Composition of 3M TM Single Bond Uni Adhesive:	
Table (7):	Sample grouping:	42
Table (8):	Crystallization and Firing Parameter Crystallization and Stain/Glaze Firing is step with glazing paste	n one
Table (9):	Laser de-bonding Parameters	61
Table (10):	Laser Surface Modification Parameters	66
Table (11):	Repeated measures ANOVA results for effect of different variables on mean TP	
Table (12):	The mean, standard deviation (SD) values and of repeated measures ANOVA test for completween TP of the two thicknesses regard surface treatment and measurement time	parison less of
Table (13):	The mean, standard deviation (SD) values and of repeated measures ANOVA test for completween TP of the two surface treatments reg of thickness and measurement time	oarison ardless
Table (14):	The mean, standard deviation (SD) value results of repeated measures ANOVA to comparison between TP before and surface treatment regardless of thickness type of surface treatment	est for after ss and

Table (15):	The mean, standard deviation (SD) values and results of repeated measures ANOVA test for comparison between TP values with different interactions of variables	77
Table (16):	Descriptive statistics and results of Mann-Whitney U test for comparison between ΔE values of the two thicknesses	79
Table (17):	Descriptive statistics and results of Mann-Whitney U test for comparison between ΔE values of the two surface treatments	80
Table (18):	Descriptive statistics and results of Mann-Whitney U test for comparison between ΔL values of the two thicknesses	81
Table (19):	Descriptive statistics and results of Mann-Whitney U test for comparison between ΔL values of the two surface treatments	82
Table (20):	Descriptive statistics and results of Mann-Whitney U test for comparison between Δa values of the two thicknesses	83
Table (21):	Descriptive statistics and results of Mann-Whitney U test for comparison between Δa values of the two surface treatments	84
Table (22):	Descriptive statistics and results of Mann-Whitney U test for comparison between Δb values of the two thicknesses	86
Table (23):	Descriptive statistics and results of Mann-Whitney U test for comparison between Δb values of the two surface treatments	87
Table (24):	Descriptive statistics and results of Mann-Whitney U test for comparison between debonding times with the two thicknesses	88

List of Figures

Figure No.	Title 1	Page No.
Figure (1):	Laser components	15
Figure (2):	IPS E.max CAD Block	35
Figure (3):	RelyX TM Veneer	36
Figure (4):	RelyX TM Ultimate Clicker TM	37
Figure (5):	3M TM Single Bond Universal Adhesive	38
Figure (6):	Meta etchant, Meta Biomed CO	39
Figure (7):	BISCO's porcelain etchant.	40
Figure (8):	BISCO porcelain primer	40
Figure (9):	Verification of block diameter using dig caliper	
Figure (10):	Isomet 4000	44
Figure (11):	Isomet saw cutting IPS E.max block	44
Figure (12):	Digital calliper verifying specim thicknesses	
Figure (13):	IPS E-max CAD Crystal/Glaze paste	46
Figure (14):	Application of IPS E.max Glaze	46
Figure (15):	Ivoclar programmat P310 furnace	47
Figure (16):	Specimens allowed to cool to rotemperateure	
Figure (17):	Thickness verification of Group 1(0.5mm) Group 2 (1mm) after crystallization	
Figure (18):	Bovine Tooth	50
Figure (19):	Ready- made Plastic Mold	51
Figure (20):	After injection of acrylic resin	51
Figure (21):	Depth Cutting & Depth grooves	53
Figure (22):	Obtaining flat area in enamel by Wheel sto	ne53
Figure (23):	Wheel stone was used to depth grooves	54

Figure (24):	Finishing of the preparation	55
Figure (25):	Hydrofluoric acid surface treatment	56
Figure (26):	Application of Phosphoric acid etch	57
Figure (27):	Application of universal bonding agent	58
Figure (28):	Resin Cement application	59
Figure (29):	Seating the ceramic disc	59
Figure (30):	Bonding under uniform load	60
Figure (31):	Er;Cr:YSGG waterlase 2780nm	62
Figure (32):	Er;Cr:YSGG Gold Handpiece & MGG6 Saffire tip	63
Figure (33):	The used scanning method	64
Figure (34):	Er,Cr,YSGG laser debonding	64
Figure (35):	Laser surface modification	66
Figure (36):	VITA Easyshade Advance	67
Figure (37):	Color measurement on grey background	68
Figure (38):	Measurements on white & black background	69
Figure (39):	Bar chart representing mean and standard deviation values for TP of the two thicknesses regardless of surface treatment and measurement time	73
Figure (40):	Bar chart representing mean and standard deviation values for TP of the two surface treatments regardless of thickness and measurement time	74
Figure (41):	Bar chart representing mean and standard deviation values for TP before and after surface treatment regardless of thickness and type of surface treatment	75
Figure (42):	Bar chart representing mean and standard deviation values for TP of different variables	78

Figure (43):	Box plot representing median and range values for ΔE of the two thicknesses (Circles represent outliers)79
Figure (44):	Box plot representing median and range values for ΔE of the two surface treatments (Circles represent outliers)80
Figure (45):	Box plot representing median and range values for ΔL of the two thicknesses81
Figure (46):	Box plot representing median and range values for ΔL of the two surface treatments82
Figure (47):	Box plot representing median and range values for Δa of the two thicknesses (Circles represent outliers83
Figure (48):	Box plot representing median and range values for Δa of the two surface treatments (Circles represent outliers)85
Figure (49):	Box plot representing median and range values for Δb of the two thicknesses (Circles and star represent outliers)86
Figure (50):	Box plot representing median and range values for Δb of the two surface treatments (Circles and star represent outliers)87
Figure (51):	Box plot representing median and range values for debonding times with the two thicknesses (Circles and stars represent outliers)88
Figure (52):	SEM before bonding of 0.5 mm thickness sample surface
Figure (53):	SEM before bonding of 1 mm thickness sample surface90
Figure (54):	SEM after laser debonding and hydrofluoric acid etching of 0.5mm thickness sample surface90
Figure (55):	SEM after laser debonding and hydrofluoric acid etching of 1mm thickness sample surface91