

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Clinical, Laboratory, Endoscopic and Histological Correlation to Assess Actual Remission in Patients with Ulcerative Colitis

Thesis

Submitted for Partial Fulfillment of Master Degree in Gastroenterology

By Mohammed Sobhy Ibrahim Elmokemy

M.B.B.Ch. - Cairo University

Under Supervision of **Prof. Dr. Sherif Monier Mohamed Farag**

Professor of Internal Medicine & Gastroenterology Faculty of Medicine - Ain Shams University

Ass. Prof. Dr. Nermine Mohamed Abd Raboh Kortam

Assistant Professor of Pathology Faculty of Medicine - Ain Shams University

Dr. Heba Ahmed Faheem

Lecturer of Internal Medicine & Gastroenterology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2021

First of all, my deepest and greatest gratitude and thanks to **Allah** for helping and supporting me to present this modest work.

In fact, I can't find meaningful words to express my extreme thankfulness, profound gratitude and deep appreciations to my eminent **Prof. Dr. Sherif Monier Mohamed Farag,** Professor of Internal Medicine & Gastroenterology, Faculty of Medicine- Ain Shams University for his majestic generous help, guidance, kind encouragement and great fruitful advice during supervision of this work.

Also I'm deeply grateful to Ass. Prof. Dr. Nermine Mohamed Abd Raboh Kortam, Assistant Professor of Pathology, Faculty of Medicine- Ain Shams University for her valuable help, assistance, encouragement and support through devoting her time to facilitate the production of this work.

And special thanks to **Dr. Heba Ahmed Faheem,**Lecturer of Internal Medicine & Gastroenterology, Faculty of
Medicine- Ain Shams University for her great efforts, unlimited
experience and support throughout this work.

Also I would like to express my deepest thankfulness and gratitude to my Family specially my parents and my wife for their great help and support without whom I could do nothing.

And finally I would like to dedicate this work to my son, hoping him the best in his life.

Mohammed Sobhy Ibrahim Elmokemy

Contents

List of Abbreviations	I
List of Tables	III
List of Figures	V
Introduction	1
Aim of the Work	5
Review of Literature	6
Patients and Methods	50
Results	58
Discussion	81
Summary	87
Conclusion	90
Recommendations	81
References	92
Arabic Summary	

List of Abbreviations

Abb.	Full Term
ACG	American College of Gastroenterology
ADCY7	Adenylate cyclase 7 gene
ALT	Serum alanine aminotransferase
AST	Serum aspartate aminotransferase
ATP	Adenosine triphosphate
BMI	Body mass index
BWT	Bowel wall thickness
cAMP	cyclic adenosine mono phosphate
CBC	Complete blood count
CD	Crohn's disease
CRC	Colorectal cancer
CRP	C-reactive protein
DC	Dendritic cells
ECCO	European Crohn's and Colitis Organisation
ELISA	Enzyme-linked-immunosorbent assay
ESR	Erythrocyte sedimentation rate
FC	Fecal calprotectin
FMT	Fecal microbiota transplantation
GS	Geboes score
GWA	Genome-wide association
GWAS	Genome-wide association studies
HLA	Human leukocyte antigen
IBD	Inflammatory bowel disease
IFN	Interferon
IL	Interleukin
INR	International normalised ratio
IPAA	Ileal pouch-anal anastomosis
IUS	Intestinal ultrasound
JAK	Janus kinase
MES	Mayo Endoscopic Subscore
MH	Mucosal healing
MMX	Multimatrix
MRI	Magnetic resonance imaging

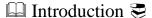
☐ List of Abbreviations ♥

Abb.	Full Term
NHI	Nancy histological index
NI	Nancy index
NSAIDs	Non-steroidal anti-inflammatory drugs
PSC	Primary sclerosing cholangitis
PT	Prothrombin time
PTT	Partial thrombopalastin time
RHI	Robart' histopathology index
SCFAs	Short chain fatty acids
STAT	Signal transducer and activator of transcription
STRIDE	Selecting Therapeutic Targets in Inflammatory
	Bowel Disease
T2T	Treat to target
TB	Tuberculosis
TNF	Tumor necrosis factor
UC	Ulcerative colitis
UCEIS	Ulcerative colitis endoscopic index of severity
WGS	Whole genome sequencing

List of Tables

Table	Title	Page
1	Distribution of UC	18
2	Mayo endoscopic scoring system	22
3	Ulcerative Colitis Endoscopic Index of	23
	Severity (UCEIS) scores and definitions	
4	The original Geboes Score	25
_	Description of the Nancy Index	26
5	histological criteria	
	Components of the Robarts'	27
6	Histopathology Index [RHI]	
-	Components of the Mayo clinic score of	42
7	UC	
8	Mayo endoscopic score	52
9	Geboes histological score	53
4.0	Demographic data distribution of the study	58
10	group as regard age	
11	Demographic data distribution of the study	58
11	group as regard sex	
12	Symptoms of the study group before remission	59
12	Comparison of Laboratory data of the	60
13	study group before and after remission	
14	Comparison of fecal calprotectin of the	65
14	study group before and after remission	
15	Colonoscopic picture of the study group	67
	before remission as regard extent	
	Comparison of Colonoscopic picture of the	68
16	study group before and after remission as	
	regard Mayo score	
17	Comparison of Histopathology of the study	69
	group before and after remission	
18	Comparison of CRP of the study group	71
10	before and after remission	

☐ List of Tables 📚

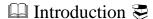

Table	Title	Page
19	Correlation between colonoscopic picture as regard Mayo score and laboratory date after remission	72
20	Correlation between colonoscopic picture as regard Mayo score and fecal calprotectin after remission	75
21	Correlation between colonoscopic picture as regard Mayo score and histopathology after remission	76
22	Correlation between histopathology and laboratory date after remission	77
23	Correlation between histopathology and Fecal calprotectin after remission	80

List of Figures

Figure	Title	Page
1	Sex distribution of the study group	58
2	Symptoms of the study group before remission	59
3	HB% before and after remission	60
4	TLC before and after remission	61
5	PLT before and after remission	62
6	ESR before and after remission	63
7	Fecal calprotectin before and after remission	65
8	Colonoscopic picture of the study group before remission as regard extent	67
9	Comparison of colonoscopic picture of the study group before and after remission as regard Mayo score	68
10	Comparison of histopathology of the study group before and after remission	69
11	Histopathology of the study group before remission	70
12	Histopathology of the study group after remission	70
13	Comparison of CRP of the study group before and after remission	71
14	Correlation between HB% and Mayo score after remission	72
15	Correlation between TLC and Mayo score after remission	73
16	Correlation between PLT and Mayo score after remission	73
17	Correlation between ESR and Mayo score after remission	74
18	Correlation between Fecal calprotectin and Mayo score after remission	75
19	Correlation between histopathology and Mayo score after remission.	76
20	Correlation between HB% and histopathology after remission	77

List of Figures 📚

Figure	Title	Page
21	Correlation between TLC and histopathology after remission	78
22	Correlation between PLT and histopathology after remission	78
23	Correlation between ESR and histopathology after remission	79
24	Correlation between histopathology and fecal calprotectin after remission	80



Introduction

Crohn's disease (CD) and ulcerative colitis (UC) are the most common types of inflammatory bowel disease (IBD) with up to 12.7 and 24.3 of incidents per year for 100,000 individuals in Europe, respectively (*Molodecky et al.*, 2012).

The severity of Ulcerative colitis and therefore, the adverse impact to the individual and the society can be reduced by appropriate medical treatment. In this regard, monitoring the response to therapy is a precondition for choosing the right therapeutics and the optimal dosage for individual patients. Traditional therapies of ulcerative colitis result in an unspecific inhibition of inflammation with reduced clinical symptoms. Therefore, treatment endpoints focused for many decades on the measurement of symptom severity, which shows only weak correlation with mucosal inflammation or disease related morbidity and mortality (*Levesque et al.*, 2015).

With the advent of biological therapies such as antitumor necrosis factor α (TNF) antibodies, which modulate specific pro-inflammatory pathways of Ulcerative colitis pathogenesis, the requirement for more reliable, welldefined end-points of therapeutic success became evident. Although these therapeutics show superior response even in patients with highly active disease, about 30% of

patients initially do not response to anti-TNF treatment and further 10–50% of patients lose response after initial successful treatment in each subsequent year (*Allez et al.*, 2010).

The idea of using mucosal healing (MH) as an endpoint for the assessment of disease activity in patients with Ulcerative colitis started gaining popularity with the demonstration that medical therapy with azathioprine and novel biologics could induce then symptomatic improvement as well as endoscopic healing. A recent metaanalysis shows that MH achieved during medical therapy clinical remission. associated with long-term was colectomy avoidance, and corticosteroid-free clinical remission in patients with UC. MH was defined as Mayo Endoscopic Subscore (MES) of 0 or 1 in most relevant clinical trials (Shah et al., 2016).

Although the concept of "deep remission" has developed in CD, it has not been replicated in those with UC. Most studies on mucosal healing focus on endoscopic scores, and the data from various trials suggests that patients with Mayo score 0 (complete mucosal healing) have longer-lasting remissions. However, patients with UC who are in clinical and endoscopic remission may still have histologically active disease and are at a high risk of having a relapse (*Bryant et al.*, 2016).

Histological abnormalities are prevalent in patients with clinically quiescent colitis. Appreciable microscopic inflammation, especially acute inflammatory cells, were associated with increase in relapse rate. *Geboes et al.* (2000), found a good correlation between the location of neutrophil and occurrence of crypt destruction. Thus, reduction or disappearance of neutrophils in the epithelium in consecutive biopsies is most likely a sign of reduction of disease activity and could indicate the efficacy of a given treatment.

Since prolonged remission reduces the cost of health care and improves the patient's quality of life, increasing attention has been paid to assessing the best condition that would guarantee a lower risk of recurrence. To date, the best prognostic factor of long-term remission is so-called mucosal healing (MH), which is evaluated by endoscopy. MH is associated with less need for steroids, avoidance of colectomy and long-term patient wellness (*Iacucci et al.*, 2015).

This finding is easily understandable since endoscopy directly describes lesions while clinical evaluation refers only to signs and symptoms of intestinal inflammation. On the basis of the observation that microscopic inflammation underlie can even macroscopically normal mucosa, histological healing has become the focus of growing attention as a more powerful