

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

Diffusion-weighted whole-body imaging with background body signal suppression (DWIBS) in detection and characterization of neoplastic breast lesions

Thesis

Submitted for Partial Fulfilment of M.D. degree in **Radiodiagnosis**

By

Yahya Eltaher Elshaikh

M.Sc. Radiodiagnosis Faculty of Medicine, Ain Shams University

Under Supervision of

Prof. Dr. Mohsen Gomaa Hassan Ismail

Professor of Radiodiagnosis
Faculty of Medicine, Ain Shams University

Prof. Dr. Nivine Abdel Moneim Chalabi

Professor of Radiodiagnosis Faculty of Medicine, Ain Shams University

Dr. Rasha Salah Eldin Hussein

Assistant Professor of Radiodiagnosis Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2020

Acknowledgment

First and foremost, I feel always indebted to ALLAH, the Most Kind and Most Merciful.

I would like to express my deepest gratitude and thanks to **Dr. Mohsen Gomaa Hassan Ismail,** Professor of Radiodiagnosis, Faculty of Medicine. Ain shams University, for giving me the honor of being his candidate, working under his supervision, guided by his experience and precious advices.

Words could not express my great appreciation, thanks and respect to **Dr. Mivine Abdel Moneim Chalabi,** Professor of Radiodiagnosis, Faculty of Medicine. Ain shams University, for her patience, care and concern throughout this work, providing this thesis with her scientific experience.

Words could not express the feeling of gratitude and respect I carry to **Dr. Rasha Salah Eldin Hussein**, Assistant Professor of Radiodiagnosis, Faculty of Medicine. Ain shams University, for her guidance, true concern and help to complete this work.

Yahya Eltaher Elshaikh

ABSTRACT

Background: Breast cancer is a major health problem in women and early detection is of prime importance.

Objective: We aimed to evaluate the role of diffusion-weighted whole-body imaging with background body signal suppression (DWIBS) in detection of breast lesions and characterization of these detected lesions.

Materials and methods: 40 female patients with clinically suspicious 50 breast lesions detected by sonomammography, in addition to the routine protocol that includes T1Wi's, T2Wi's, STIR, DCE-MRI, DWI sequences (with ADC maps) all the participants underwent DWIBS sequence (with ADC maps). The histopathology served as reference standard. First, we compared the detectability of breast lesions on DWIBS with that of the DWI. We then compared the ADCs of the malignant lesions (n=35) to that of the benign lesions (n=15) in both DWI and DWIBS.

Results: Thirty seven lesions were detected via DWIBS (detectability of 74.0%) was less than that of DWI (detectability of 78.0%). In DWIBS, the mean ADC value of the malignant lesions $(0.80 \pm 0.27 \times 10^{-3} \text{mm}^2/\text{s})$ was significantly lower than that of the benign lesions $(1.40 \pm 0.41 \times 10^{-3} \text{mm}^2/\text{s})$. With a cut-off value of $1.3 \times 10^{-3} \text{mm}^2/\text{s}$ for ADC, DWIBS achieved 85.7% sensitivity and 80% specificity for differentiating between benign and malignant lesions.

Conclusion: Although it showed lower detectability for breast lesions than DWI, our study suggests that DWIBS is superior to DWI in the visualization of malignant breast lesion. Also based on ADC, DWIBS provides additional information that may further increase the specificity of breast lesion characterization.

KEY WORDS

Breast cancer-DWIBS- Suspicious breast lesions-Accuracy.

Dedication

Words can never express my sincere thanks to My Family and My Loving Wife for their generous emotional support and continuous encouragement, which brought the best out of me. I owe them all every achievement throughout my life.

I would like to express my everlasting gratitude to all My Professors, Colleagues and Friends, so many of them influenced, encouraged and inspired me throughout the years. I wish them the best of all.

I would like also to thank the **Patients** who agreed willingly to be part of my study and without them; I would not have been able to accomplish this work.

ABSTRACT

Background: Breast cancer is a major health problem in women and early detection is of prime importance.

Objective: We aimed to evaluate the role of diffusion-weighted whole-body imaging with background body signal suppression (DWIBS) in detection of breast lesions and characterization of these detected lesions.

Materials and methods: 40 female patients with clinically suspicious 50 breast lesions detected by sonomammography, in addition to the routine protocol that includes T1Wi's, T2Wi's, STIR, DCE-MRI, DWI sequences (with ADC maps) all the participants underwent DWIBS sequence (with ADC maps). The histopathology served as reference standard. First, we compared the detectability of breast lesions on DWIBS with that of the DWI. We then compared the ADCs of the malignant lesions (n=35) to that of the benign lesions (n=15) in both DWI and DWIBS.

Results: Thirty seven lesions were detected via DWIBS (detectability of 74.0%) was less than that of DWI (detectability of 78.0%). In DWIBS, the mean ADC value of the malignant lesions $(0.80 \pm 0.27 \times 10^{-3} \text{mm}^2/\text{s})$ was significantly lower than that of the benign lesions $(1.40 \pm 0.41 \times 10^{-3} \text{mm}^2/\text{s})$. With a cut-off value of $1.3 \times 10^{-3} \text{mm}^2/\text{s}$ for ADC, DWIBS achieved 85.7% sensitivity and 80% specificity for differentiating between benign and malignant lesions.

Conclusion: Although it showed lower detectability for breast lesions than DWI, our study suggests that DWIBS is superior to DWI in the visualization of malignant breast lesion. Also based on ADC, DWIBS provides additional information that may further increase the specificity of breast lesion characterization.

KEY WORDS

Breast cancer-DWIBS- Suspicious breast lesions-Accuracy.

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	v
Introduction	1
Aim of the Work	4
Review of Literature	
Gross Anatomy of the Breast	5
MR Anatomy of the Breast	17
Pathology of the Breast Lesions	23
Basic Principles of Diffusion Weighted Imagin	ng (DWI)57
Concept of DWIBS	73
Patients and Methods	84
Results	91
Illustrative Cases	103
Discussion	123
Summary & Conclusion	134
References	
Arabic Summary	

List of Abbreviations

Abb.	Full term
ACR	American Cancer Society
	Apparent diffusion coefficient
	Area under the enhancement curve
	Breast imaging reporting and data system
	Breast cancer gene
_	Contrast enhanced magnetic resonant imaging
	Contrast to noise ratio
	Dynamic Contrast enhanced magnetic resonant imaging
DCIS	.Ductal carcinoma in situ
DWI	Diffusion weighted image
DWIBS	Diffusion weighted whole-body imaging with background body signal suppression
DW-MRI	.Diffusion-weighted magnetic resonance imaging
FCCs	Fibrocystic changes
FLASH	Three dimensional fast angle low shot gradient echo
FOV	Field-of-view
Gd-DTPA	Gadolinium diethylene triamine penta aceticacid
HRT	Hormone Replacement Therapy
ILC	Infiltrating lobular carcinoma
LCIS	Lobular carcinoma in situ
LIQ	Lower Inner Quadrant
LOQ	Lower Outer Quadrant
LVI	Lymphovascular invasion
MIP	Maximum intensity projection
MMCM	Macromolecular contrast media
MRA	Magnetic resonance angiography
MRM	Magnetic Resonance Mammography

List of Abbreviations Cont...

Abb.	Full term
NOS	Not otherwise specified
PPV	Positive predictive value.
ROI	Region of interest
RSL	Radial scelerosing lesion
TDLU	Terminal Ductal Lobular Unit
UIQ	Upper Inner Quadrant
UOQ	Upper Outer Quadrant

List of Tables

Table No.	Title	Page No.
Table (1):	Patterns of normal pa	
Table (2):	Histologic category of benign bre associated with the relative risk cancer for patients with no family l	for breast
Table (3):	Signal intensity and ADC value pathologic conditions of the breast.	
Table (4):	Four combinations of intravoxel mot molecules and their effect on image cimage quality in DWI	contrast and
Table (5):	Showing signal detection on D examined breast lesions	
Table (6):	Showing signal detection on DW examined breast lesions	
Table (7):	Showing the signal intensity on the benign and the malignant lesio	
Table (8):	Shows the sensitivity, specificity, and accuracy of T2Wis in character the benign and malignant breast leading to the sensitivity of the sensitivity.	erization of
Table (9):	Shows the classification of detection based on the morphology feature enhancement patterns of DCE-MR	es and the
Table (10):	Showing the time/signal intensit the benign and malignant lesions.	•
Table (11):	Showing the MRI-BIRADS class breast lesions.	
Table (12):	Shows classification of the bread based on the BIRADS scoring system MRI findings and their history results.	em of DCE- pathological