

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Screening for Celiac Disease among Patients with Chronic Kidney Disease

Thesis

Submitted for partial Fulfillment of Master Degree in Pediatrics

Submitted by Doha Ahmad Anwar

Ain Shams University M.B, B.Ch

Supervisors

Prof. Magid Ashraf Abdel Fattah Ibrahim

Professor of Pediatrics Faculty of Medicine - Ain Shams University

Prof. Ahmed Mohamed Hamdy

Professor of Pediatrics Faculty of Medicine - Ain Shams University

Dr. Ragia Marei Ali Said

Assistant Professor of Pediatrics Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2019

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to ALLAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Magid Ashraf Abdel Tattah Ibrahim**, Professor of Pediatrics - Faculty of Medicine- Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Ahmed Mohamed****Thandy, Professor of Pediatrics, Faculty of Medicine,
Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Ragia Marei**Ali Said, Assistant Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her great help, active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Doha Ahmad Anwar

List of Contents

Title	Page No.
List of Abbreviations	5
List of Tables	6
List of Figures	7
Introduction	1
Aim of the Work	12
Review of Literature	
Chronic Kidney Disease	13
Celiac Disease	22
■ The Gut- Kidney Axis	35
Subjects and Methods	46
Results	53
Discussion	70
Summary	81
References	82
Arabic Summary	

List of Abbreviations

Abb.	Full term
	Antigen-presenting cells. Congenital anomalies of the kidney and urinary
0.5	tract.
	Celiac disease.
	Chronic kidney disease.
	Chronic renal failure.
CVD	Cardiovascular disease.
<i>DGPA</i>	Deaminated gliadin peptides antibodies.
<i>EATL</i>	$ Enteropathy\ associated\ T-cell\ lymphoma.$
eGFR	Estimated glomerular filtration rate.
<i>EMA</i>	Endomysial antibodies.
<i>ESRD</i>	End-stage renal disease.
<i>GFD</i>	Gluten-free diet.
<i>GFR</i>	Glomerular filtration rate.
<i>GI</i>	Gastrointestinal.
HLA	Human leukocyte antigen.
HTN	Hypertension.
<i>IEL</i>	Intraepithelial lymphocytes.
<i>IgA</i>	$Immunoglobulin\ A.$
NKF/KDOQI	National Kidney Foundation / Kidney Disease and Outcome Quality Initiative.
<i>PD</i>	Peritoneal dialysis.
<i>RAAS</i>	Renin angiotensin aldosterone system.
<i>RCD</i>	Refractory celiac disease.
<i>ROD</i>	$ Renal\ osteodystrophy.$
<i>tTG</i>	Tissue transglutaminase.

List of Tables

Table No.	Title Page	No.
Table (1):	Stages of chronic kidney disease in	
	children	14
Table (2):	Marsh classification of histologic findings	
	in celiac disease	31
Table (3):	Demographic data of cases & controls	53
Table (4):	Etiology of chronic renal disease among	
	all included patients (n=90)	54
Table (5):	Anthropometric data of all included	
	patients(n=90)	55
Table (6):	Comparisons of anthropometric	
	measurements among ESRD&	
	conservative patients	56
Table (7):	Comparisons of blood indices between	
, ,	ESRD & conservative cases.	58
Table (8):	Comparison between ESRD	
- (-,	&conservative cases regarding bone	
	profile	59
Table (9):	GIT symptoms among all included	
(-,	patients (n=90)	60
Table (10):	Comparisons between cases & controls	
	regarding GIT symptoms	
Table (11):	Comparisons between ESRD &	
,-	conservative patients regarding frequent	
	GIT symptoms(n=90)	66
Table (12):	Distribution of cases on Bristol stool	
20020 (22)	chart.	68
Table (13):	Comparison between the two studied	
10010 (10)	groups regarding Bristol stool chart	
Table (14):	All cases had serum level of antitissue	
14010 (11)*	transglutaminas IgG & IgA <10 U/ml	69

List of Figures

Fig. No.	Title	Page No.
Figure (1):	The "iceberg model" idealizing interplay between celiac disease g makeup and exposure to gluten	genetic
Figure (2):	Duodeno-endoscopic finding (a nodularity	
Figure (3):	Duodeno-endoscopic finding (a mosaic pattern	
Figure (4):	Simplified schematic representatives research approaches to develop grangeted therapies for celiac disease	gluten-
Figure (5):	Effect of CKD on the colonic micro (dysbiosis) and mucosal structur function	e and
Figure (6):	Illustration of the vicious cycuremia in the colon	
Figure (7):	The link between gastrointesting renal disorders	
Figure (8):	Bristol stool chart	47
Figure (9):	Weight centile for ESRD patier dialysis and conservative	
Figure (10):	Height centile for ESRD patier dialysis and conservative	
Figure (11):	GIT symptoms between patient controls	s and 62
Figure (12):	Incidence of waterry diarhea be patients and controls.	
Figure (13):	Incidence of constipation be patients and controls.	

List of Figures cont...

Fig. No.	Title	Page No.
Figure (14):	Straining between controls patients.	
Figure (15):	Pain in defecation between control patients.	
Figure (16):	Incontinence between controls patients	
Figure (17):	GIT symptoms between controls patients.	
Figure (18):	Diarrhea between ESRD conservatives	
Figure (19):	GIT symptoms between ESRD conservatives	
Figure (20):	GIT symptoms between ESRD conservatives	

Introduction

he terms chronic renal failure (CRF) and chronic renal insufficiency have been replaced by the term chronic kidney disease (CKD) which was proposed by National Kidney Foundation/Kidney Disease and Outcome Quality Initiative (NKF /KDOQI) group in 2002 for any patient who has kidney damage lasting for at least 3 months with or without a decreased GFR or any patient who has a GFR of<60 mL/min/1.73 m² lasting for 3 months with or without kidney damage. CKD refers to a multi-systemic clinical condition characterized by an irreversible deterioration of renal function that can further progress to end-stage renal disease (ESRD) (*Oliveira and Mak, 2018*).

Celiac disease (CD) is one of the most common lifelong food-related disorders worldwide. CD is a permanent intolerance to ingested gluten present in wheat, rye and barley resulting in immune- mediated enteropathy in individuals who are genetically susceptible to the disease (*Lindfors et al.*, 2019).

Until the mid-1970s, CD was described as a malabsorption syndrome during childhood. However, more studies have shown that the disease can arise at any age and affect any organ in the body (*Tersigni et al.*, 2014).

CD is thought to be underdiagnosed owing to the fact that its extra intestinal manifestations can misdirect the diagnosis and in some cases they are the only clinical manifestations. Some of these manifestations are direct consequences of autoimmunity, whereas others are indirectly related to inflammation and/or malabsorption (Leffler et al., 2015).

The key to CD diagnosis is increased awareness of the wide spectrum of symptoms and screening in risk groups (Lindfors et al., 2019).

Although intestinal biopsy remains the gold standard for the definite diagnosis of CD, highly sensitive and specific serological tests, such as tissue transglutaminase (tTG), endomysial IgA (EMA) and deamidated gliadin peptide antibodies, have become more important in the screening of large populations. Serological tests are widely used to facilitate selection of patients for diagnostic endoscopy and small bowel biopsy (Caio et al., 2019).

CD is a lifelong disease and complete avoidance of gluten-containing food products is the only known effective treatment for it. There are challenges in maintaining a good compliance to gluten free diet (GFD), therefore it is essential that a reliable diagnosis of CD is made before instituting GFD in the patients (Bascuñán et al., 2017).

Mass screening of CD by serology in the general population has been suggested as it fulfills many of the WHO criteria for mass screening as it is an important health problem, common, simple to diagnose, and treatment is available. There is evidence that screening at-risk groups for CD could be beneficial, but more studies are needed before large scale population screening can be recommended (Kivelä and Kurppa, 2018).

Chronic kidney disease (CKD) and end-stage renal disease (ESRD) cause many organ complications including gastrointestinal (GI) tract (GIT).CKD affect whole GIT parts leading to multiple different lesions, GIT involvement in CKD manifests as uremic anorexia, gastroenteritis, nausea, vomiting, uremic fetor, idiopathic ascites, peptic ulcer disease, GIT bleeding, viral hepatitis, and peritonitis (Chillon et al., 2016).

AIM OF THE WORK

The aim of this study is to:

1- Screening for celiac disease among pediatric patients with chronic kidney diseases.