

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Evaluation of Nutritional Status As a prognostic Indicator for the Outcome in Liver Transplant Recipients

Thesis

Submitted for partial fulfillment of 'Master degree' in General Intensive Care

By

Mohamed Ibrahim Ibrahim Akp El-bab

(M.B., B.Ch.)

Supervised By

Prof. Mohamed Abd El-Khalik Mohamed Ali

Professor of Anesthesiology, General Intensive Care Medicine and Pain Management Faculty of Medicine - Ain Shams University

Dr. Randa Ali Shoukry

Assistant Professor of Anesthesiology, General Intensive Care Medicine and
Pain Management
Faculty of Medicine - Ain Shams University

Dr. Dalia Fahmy Emam

Lecturer of Anesthesiology, General Intensive Care Medicine and Pain Management Faculty of Medicine - Ain Shams University

Dr. Eman Ibrahim El-Desoki Mahmoud

Fellow of General Intensive Care National Hepatology and Tropical Medicine Research Institute, Cairo

> Faculty of Medicine Ain Shams University 2020

ACKNOWLEDGEMENTS

First of all I will experience my deep gratefulness to our creator "Allah" who always helps and guides us.

Then, I will have to express a great acknowledgement to the great professor Prof. Mohamed Abd El-Khalik Mohamed Ali, Professor of Anesthesiology, General Intensive Care Medicine and Pain Management, Faculty of Medicine, Ain Shams University for his great support, close supervision and continuous encouragement through the whole work; it is a great honor to work under his supervision. I am also deeply thanking Dr. Randa Ali Shoukry, Assistant Professor of Anesthesiology, General Intensive Care Medicine and Pain Management, Faculty of Medicine, Ain Shams University for her continuous thinking, working, advising and following up of this work to be on the correct way. Then, I'm deeply indebted to Dr. Dalia Fahmy Emam, lecturer of Anesthesiology, General Intensive Care Medicine and Pain Management, Faculty of Medicine, Ain Shams University for her kind help, guidance, useful advices, valuable suggestions, continuous encouragement and support all through my work. Also, I will provide my sincere thanks to Dr. Eman Ibrahim El-Desoki Mahmoud, lecturer of General Intensive Care, National Hepatology and Tropical Medicine Research Institute, Cairo for all her guidance, encouragement, teaching and help during all my development in medical and research field.

Finally, I would deeply thank my dear family whom through their great help did I finish my work

Contents

List of tables	i
List of figures	iii
List of abbreviations	iv
Introduction	1
Aim of the work	3
Review of literature	
Chapter (1): Physiology of the liver	4
Chapter (2): Malnutrition in chronic liver disease	15
Chapter (3): Nutritional assessment in hepatic patients'	
pre-transplantation	25
Chapter (4): Nutrition in hepatic patients	42
Chapter (5): Living donor liver transplantation	60
Patients and methods	78
Results	83
Discussion	99
Conclusion	111
Recommendations	112
English Summary	113
References	116
Arabic summary	

List of Tables

Table number	Description	P
Table (1)	Functions of the liver	4
Table (2)	Clinical markers reflecting possible	
	nutritional deficiency	35
Table (3)	Methods of evaluation of dietary intake	37
Table (4)	Guidelines for SGA ranking	38
Table (5)	Technical complications after liver	
	transplantation	67
Table (6)	Major post- liver transplantation	
	pulmonary complications	75
Table (7)	Demographic data	84
Table (8)	The correlation between subjective global	
	assessment and demographic data	85
Table (9)	Causes of liver transplantation	86
Table (10)	The correlation between subjective global	
	assessment and causes of liver transplant	87
Table (11)	Pre-operative clinical data	88
Table (12)	Correlation between subjective global	
	assessment and pre-operative clinical data	89
Table (13)	Post-operative clinical course	90

Table (14)	correlation between subjective global	
	assessment and postoperative clinical	
	course	92
Table (15)	Routes of nutritional intervention post	
	liver transplant	93
Table (16)	Correlation between subjective global	
	assessment and the routes of nutritional	
	intervention	94
Table (17)	Laboratory course of sepsis and kidney	
	function	95
Table (18)	Correlation between subjective global	
	assessment with sepsis and kidney	
	function	96
Table (19)	Laboratory course of Liver functions	97
Table (20)	Correlation between subjective global	
	assessment and liver functions	98

List of Figures

Figure number	Description	P
	Classification of patients according to	
Figure (1)	pre-liver transplant subjective global	
	assessment	83

List of Abbreviations

AIDS	Acquired Immunodeficiency Syndrome
ALT	Alanine Transaminase
AST	Aspartate Transferase
BCM	Body Cell Mass
BIA	Bioelectric Impedance Analysis
BMD	Bone Mineral Density
BMI	Body Mass Index
BUN	Blood Urea Nitrogen
CD	Cluster of D ifferentiation
CLD	Chronic Liver Disease
CPP	Central Perfusion Pressure
CRP	C Reactive Protein
D. bilirubin	Direct bilirubin
DEXA	Dual-Energy X-ray Absorptiometry
DKA	Diabetic Keto-Acidosis
DM	Diabetes Mellitus
ESLD	End Stage Liver Disease
FFM	Fat Free Mass
GBWR	Graft-to-Body Weight Ratio
GI	Gastro Intestinal
GW	Graft's Weight
HAT	Hepatic Artery Thrombosis
HCC	Hepato-Cellular Carcinoma
HDL	High Density Lipo-proteins
HIV	Human Immunodeficiency Virus
HS	H ighly S ignificant
HTN	H ypertension
ICP	Intra Cranial Pressure
ICU	Intensive Care Unit

IGF-1	Insulin-like Growth Factor-1
IL-10	Inter-Leukin 10
INR	International Normalized Ratio
IV	Intra-Venous
kg	Kilo Grams
LCAT	Lecithin-Cholesterol Acyl-Transferase
LDL	Low Density Lipo-proteins
LDLT	Living Donor Liver Transplantation
LST	Lean Soft Tissue
LT	Liver Transplantation
MAC	Mid Arm Circumference
MAMA	Mid Arm Muscle Area
MAMC	Mid Arm Muscle Circumference
MCT	Medium-Chain Triglycerides
MHC I	Major Histocompatibility Complex I
MV	Mechanical Ventilation
NK	Natural Killer cells
NKT	Natural Killer T cells
NS	Non-Significant
PCT	Procalcitonin
PEM	Protein-Energy Malnutrition
PHA	Phytohaem-Agglutinin
PPC	Postoperative Pulmonary Complications
PSC	Primary Sclerosing Cholangitis
P-value	P robability V alue
PVT	Portal Vein Thrombosis
RBCs	Red Blood Cells
RBP	Retinol-Binding-Protein
RW	Recipient's Weight
S	S ignificant
SD	Standard D eviation

SFSS	Small-For-Size Syndrome
SGA	Subjective Global Assessment
SOFA	Sequential Organ Failure Assessment
T. bilirubin	Total bilirubin
TBK	Total Body Potassium
TLC	Total Leucocytic Count
TNF	Tumour Necrosis Factor
TSF	Triceps Skin Fold
UBW	Usual Body Weight

Introduction

Liver transplantation is a viable treatment option for end-stage liver disease and acute liver failure. The surgical procedure is very demanding and ranges from 4 to 18 hours depending on outcome. Numerous anastomoses and sutures, and many disconnections and reconnections of abdominal and hepatic tissue, must be made for the transplant to succeed, requiring an eligible recipient and a well-calibrated live or cadaveric donor match. By any standard, hepatic transplantation is a major surgical procedure (*Francesco*, *Alberto & Zanetto*, 2016).

Malnutrition is associated with increased morbidity and mortality rates in patients with chronic liver disease. Patients with cirrhosis who are malnourished have a higher rate of hepatic encephalopathy, infection, and variceal bleeding. They are also twice as likely to have refractory ascites. Numerous studies have found a correlation between poor nutritional status and a decreased survival rate. (Alberino et al., 2001).

Nutritional status has a prognostic implication in liver transplant candidates. Malnutrition before transplantation is associated with a higher rate of post-transplant complications, including infection and variceal bleeding. Patients who are severely malnourished require more blood products intra-operatively, stay on ventilatory support longer postoperatively, and have an increased length of hospital stay and a higher incidence of graft failure. Ultimately, patients with poor nutritional status before transplant surgery have a decreased survival rate after liver transplantation (*Selberg Oet al.*, 1997).

Checking all patients with chronic liver disease for nutritional abnormalities can detect those at risk of developing preventable complications. Starting nutritional therapy during all phases of liver transplant has the possibility to decrease the risk of such complications (*Henkel and Buchman. 2005*).

Aim of the work

The purpose of this study was to determine the impact of nutritional status pre-liver transplant on recipients' course and the outcome post-transplant.